

The Borel Complexity of Isomorphism for some Ordered Theories

Richard Rast

University of Maryland

June 4, 2015

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a local nonstructure property, leading \cong_T to be Borel complete, or

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:
 - ▶ $(1, =)$

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:
 - ▶ $(1, =)$
 - ▶ $(n, =)$ for some $3 \leq n < \omega$

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:
 - ▶ $(1, =)$
 - ▶ $(n, =)$ for some $3 \leq n < \omega$
 - ▶ $(2^{\aleph_0}, =)$

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:
 - ▶ $(1, =)$
 - ▶ $(n, =)$ for some $3 \leq n < \omega$
 - ▶ $(2^{\aleph_0}, =)$
 - ▶ \cong_2

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:
 - ▶ $(1, =)$
 - ▶ $(n, =)$ for some $3 \leq n < \omega$
 - ▶ $(2^{\aleph_0}, =)$
 - ▶ \cong_2

depending on how many finite choices there are to make.

Overview

Our aim is to show, for two large classes of ordered theories, that there is a sharp dichotomy:

- ① T has a **local nonstructure property**, leading \cong_T to be Borel complete, or
- ② Models are determined by **finite choices**, and \cong_T is one of:
 - ▶ $(1, =)$
 - ▶ $(n, =)$ for some $3 \leq n < \omega$
 - ▶ $(2^{\aleph_0}, =)$
 - ▶ \cong_2

depending on how many finite choices there are to make.

We then ask if this theorem can be extended to more general contexts.

Roadmap

1 O-Minimal Theories

2 Colored Linear Orders

3 Extensions

- Closed Questions
- Open Questions

The Nonstructure Hypothesis

Let T be an o-minimal theory.

A **nonsimple type** $p \in S_1(A)$ is a nonalgebraic type where there is a set $B \subset p(\mathfrak{C})$ and an element $b \in p(\mathfrak{C})$ where $b \in \text{cl}(AB)$ but $b \notin B$.

The Nonstructure Hypothesis

Let T be an o-minimal theory.

A **nonsimple type** $p \in S_1(A)$ is a nonalgebraic type where there is a set $B \subset p(\mathfrak{C})$ and an element $b \in p(\mathfrak{C})$ where $b \in \text{cl}(AB)$ but $b \notin B$.

Our nonstructure hypothesis is the existence of a nonsimple type.

Proposition

There is a nonsimple type over some set iff there is one over the empty set.

Theories with Structure, I

L. Mayer (1988) showed Vaught's conjecture holds for o-minimal theories with the following:

Lemma

Say T has no nonsimple types. Then $M \cong N$ if and only if, for every $p \in S_1(\emptyset)$, $(p(M), <) \cong (p(N), <)$.

Lemma

Say $p \in S_1(\emptyset)$ is not nonsimple.

Then there are at most six choices for the order type of $p(M)$.

If p is isolated, there is only one.

Theories with Structure, II

Say T has no nonsimple types. Let κ be the number of **independent, nonisolated** types in $S_1(\emptyset)$. κ determines \cong_T :

Theories with Structure, II

Say T has no nonsimple types. Let κ be the number of **independent, nonisolated** types in $S_1(\emptyset)$. κ determines \cong_T :

- ① If $\kappa = 0$, \cong_T is $(1, =)$

Theories with Structure, II

Say T has no nonsimple types. Let κ be the number of **independent, nonisolated** types in $S_1(\emptyset)$. κ determines \cong_T :

- ① If $\kappa = 0$, \cong_T is $(1, =)$
- ② If $1 \leq \kappa < \aleph_0$, then \cong_T is $(n, =)$ for some $3 \leq n \leq 6^\kappa$

Theories with Structure, II

Say T has no nonsimple types. Let κ be the number of **independent, nonisolated** types in $S_1(\emptyset)$. κ determines \cong_T :

- ① If $\kappa = 0$, \cong_T is $(1, =)$
- ② If $1 \leq \kappa < \aleph_0$, then \cong_T is $(n, =)$ for some $3 \leq n \leq 6^\kappa$
- ③ If $\kappa = \aleph_0$, then \cong_T is $(2^{\aleph_0}, =)$

Theories with Structure, II

Say T has no nonsimple types. Let κ be the number of **independent, nonisolated** types in $S_1(\emptyset)$. κ determines \cong_T :

- ① If $\kappa = 0$, \cong_T is $(1, =)$
- ② If $1 \leq \kappa < \aleph_0$, then \cong_T is $(n, =)$ for some $3 \leq n \leq 6^\kappa$
- ③ If $\kappa = \aleph_0$, then \cong_T is $(2^{\aleph_0}, =)$
- ④ If $\kappa = 2^{\aleph_0}$, then \cong_T is \cong_2

Archimedean Equivalence

Let $p \in S_1(\emptyset)$ be a type. Define \sim on $p(\mathfrak{C})$ where, for $a, b \in p(\mathfrak{C})$,
 $a \sim b$ iff there are $a_1, a_2 \in \text{cl}^p(a)$ with $a_1 \leq b \leq a_2$

Proposition

\sim is an equivalence relation on $p(\mathfrak{C})$ with convex classes

Archimedean Equivalence

Let $p \in S_1(\emptyset)$ be a type. Define \sim on $p(\mathfrak{C})$ where, for $a, b \in p(\mathfrak{C})$,
 $a \sim b$ iff there are $a_1, a_2 \in \text{cl}^p(a)$ with $a_1 \leq b \leq a_2$

Proposition

\sim is an equivalence relation on $p(\mathfrak{C})$ with convex classes

Proof of transitivity:

- Let $a \sim b$ and $b \sim c$

Archimedean Equivalence

Let $p \in S_1(\emptyset)$ be a type. Define \sim on $p(\mathfrak{C})$ where, for $a, b \in p(\mathfrak{C})$,
 $a \sim b$ iff there are $a_1, a_2 \in \text{cl}^p(a)$ with $a_1 \leq b \leq a_2$

Proposition

\sim is an equivalence relation on $p(\mathfrak{C})$ with convex classes

Proof of transitivity:

- Let $a \sim b$ and $b \sim c$
- Let $f_1(a) = a_1 \leq b \leq f_2(a)$ and $g_1(b) \leq c \leq g_2(b)$

Archimedean Equivalence

Let $p \in S_1(\emptyset)$ be a type. Define \sim on $p(\mathfrak{C})$ where, for $a, b \in p(\mathfrak{C})$,
 $a \sim b$ iff there are $a_1, a_2 \in \text{cl}^p(a)$ with $a_1 \leq b \leq a_2$

Proposition

\sim is an equivalence relation on $p(\mathfrak{C})$ with convex classes

Proof of transitivity:

- Let $a \sim b$ and $b \sim c$
- Let $f_1(a) = a_1 \leq b \leq f_2(a)$ and $g_1(b) \leq c \leq g_2(b)$
- By cell decomposition, f_i and g_i take p to p and are strictly increasing

Archimedean Equivalence

Let $p \in S_1(\emptyset)$ be a type. Define \sim on $p(\mathfrak{C})$ where, for $a, b \in p(\mathfrak{C})$,
 $a \sim b$ iff there are $a_1, a_2 \in \text{cl}^p(a)$ with $a_1 \leq b \leq a_2$

Proposition

\sim is an equivalence relation on $p(\mathfrak{C})$ with convex classes

Proof of transitivity:

- Let $a \sim b$ and $b \sim c$
- Let $f_1(a) = a_1 \leq b \leq f_2(a)$ and $g_1(b) \leq c \leq g_2(b)$
- By cell decomposition, f_i and g_i take p to p and are strictly increasing
- Then $g_1(f_1(a)) \leq g_1(b) \leq c \leq g_2(b) \leq g_2(f_2(a))$, so $a \sim c$

Archimedean Equivalence

Let $p \in S_1(\emptyset)$ be a type. Define \sim on $p(\mathfrak{C})$ where, for $a, b \in p(\mathfrak{C})$,
 $a \sim b$ iff there are $a_1, a_2 \in \text{cl}^p(a)$ with $a_1 \leq b \leq a_2$

Proposition

\sim is an equivalence relation on $p(\mathfrak{C})$ with convex classes

Proof of transitivity:

- Let $a \sim b$ and $b \sim c$
- Let $f_1(a) = a_1 \leq b \leq f_2(a)$ and $g_1(b) \leq c \leq g_2(b)$
- By cell decomposition, f_i and g_i take p to p and are strictly increasing
- Then $g_1(f_1(a)) \leq g_1(b) \leq c \leq g_2(b) \leq g_2(f_2(a))$, so $a \sim c$

The other axioms are similarly verified.

Theories without Structure: Faithful Types

$p \in S_1(\emptyset)$ is **faithful** if, for all sets of pairwise \sim -inequivalent $A \subset p(\mathfrak{C})$,
If $b \in \text{cl}^p(A)$, then $b \sim a$ for some $a \in A$.

Theories without Structure: Faithful Types

$p \in S_1(\emptyset)$ is **faithful** if, for all sets of pairwise \sim -inequivalent $A \subset p(\mathfrak{C})$,
If $b \in \text{cl}^p(A)$, then $b \sim a$ for some $a \in A$.

Proposition

Say $p \in S_1(\emptyset)$ is nonsimple and **faithful**. Then \cong_T is Borel complete.

A proof:

- Let $(I, <)$ be a nonempty countable linear order.

Theories without Structure: Faithful Types

$p \in S_1(\emptyset)$ is **faithful** if, for all sets of pairwise \sim -inequivalent $A \subset p(\mathfrak{C})$,
If $b \in \text{cl}^p(A)$, then $b \sim a$ for some $a \in A$.

Proposition

Say $p \in S_1(\emptyset)$ is nonsimple and **faithful**. Then \cong_T is Borel complete.

A proof:

- Let $(I, <)$ be a nonempty countable linear order.
- Let $A_I = \{a_i : i \in I\}$ all realize p , and if $i < j$, then $a_i \ll a_j$

Theories without Structure: Faithful Types

$p \in S_1(\emptyset)$ is **faithful** if, for all sets of pairwise \sim -inequivalent $A \subset p(\mathfrak{C})$,
If $b \in \text{cl}^p(A)$, then $b \sim a$ for some $a \in A$.

Proposition

Say $p \in S_1(\emptyset)$ is nonsimple and **faithful**. Then \cong_T is Borel complete.

A proof:

- Let $(I, <)$ be a nonempty countable linear order.
- Let $A_I = \{a_i : i \in I\}$ all realize p , and if $i < j$, then $a_i \ll a_j$
- Let M_I be prime over A_I

Theories without Structure: Faithful Types

$p \in S_1(\emptyset)$ is **faithful** if, for all sets of pairwise \sim -inequivalent $A \subset p(\mathfrak{C})$,
If $b \in \text{cl}^p(A)$, then $b \sim a$ for some $a \in A$.

Proposition

Say $p \in S_1(\emptyset)$ is nonsimple and **faithful**. Then \cong_T is Borel complete.

A proof:

- Let $(I, <)$ be a nonempty countable linear order.
- Let $A_I = \{a_i : i \in I\}$ all realize p , and if $i < j$, then $a_i \ll a_j$
- Let M_I be prime over A_I
- The map $I \mapsto M_I$ is Borel

Theories without Structure: Faithful Types

$p \in S_1(\emptyset)$ is **faithful** if, for all sets of pairwise \sim -inequivalent $A \subset p(\mathfrak{C})$,
If $b \in \text{cl}^p(A)$, then $b \sim a$ for some $a \in A$.

Proposition

Say $p \in S_1(\emptyset)$ is nonsimple and **faithful**. Then \cong_T is Borel complete.

A proof:

- Let $(I, <)$ be a nonempty countable linear order.
- Let $A_I = \{a_i : i \in I\}$ all realize p , and if $i < j$, then $a_i \ll a_j$
- Let M_I be prime over A_I
- The map $I \mapsto M_I$ is Borel
- $p(M_I)/\sim$ has order type $(I, <)$, so this is a Borel reduction

Nonisolated Types, I

Proposition

Non-cuts are faithful.

A proof:

- Pick a minimal counterexample $c < b_1 < \dots < b_{n+1}$ where $f(\bar{b}, b_{n+1}) = c$ but $c \ll b_1 \ll \dots \ll b_{n+1}$

Nonisolated Types, I

Proposition

Non-cuts are faithful.

A proof:

- Pick a minimal counterexample $c < b_1 < \dots < b_{n+1}$ where $f(\bar{b}, b_{n+1}) = c$ but $c \ll b_1 \ll \dots \ll b_{n+1}$
- The function $g(y) = f(\bar{b}, y)$ takes $\text{tp}(b_{n+1}/\bar{b})$ to $\text{tp}(c/\bar{b})$

Nonisolated Types, I

Proposition

Non-cuts are faithful.

A proof:

- Pick a minimal counterexample $c < b_1 < \dots < b_{n+1}$ where $f(\bar{b}, b_{n+1}) = c$ but $c \ll b_1 \ll \dots \ll b_{n+1}$
- The function $g(y) = f(\bar{b}, y)$ takes $\text{tp}(b_{n+1}/\bar{b})$ to $\text{tp}(c/\bar{b})$
- $\text{tp}(b_{n+1}/\bar{b})$ is a non-cut or atomic interval

Nonisolated Types, I

Proposition

Non-cuts are faithful.

A proof:

- Pick a minimal counterexample $c < b_1 < \dots < b_{n+1}$ where $f(\bar{b}, b_{n+1}) = c$ but $c \ll b_1 \ll \dots \ll b_{n+1}$
- The function $g(y) = f(\bar{b}, y)$ takes $\text{tp}(b_{n+1}/\bar{b})$ to $\text{tp}(c/\bar{b})$
- $\text{tp}(b_{n+1}/\bar{b})$ is a non-cut or atomic interval
- $\text{tp}(c/\bar{b})$ is a cut or non-cut (respectively)

Nonisolated Types, I

Proposition

Non-cuts are faithful.

A proof:

- Pick a minimal counterexample $c < b_1 < \dots < b_{n+1}$ where $f(\bar{b}, b_{n+1}) = c$ but $c \ll b_1 \ll \dots \ll b_{n+1}$
- The function $g(y) = f(\bar{b}, y)$ takes $\text{tp}(b_{n+1}/\bar{b})$ to $\text{tp}(c/\bar{b})$
- $\text{tp}(b_{n+1}/\bar{b})$ is a non-cut or atomic interval
- $\text{tp}(c/\bar{b})$ is a cut or non-cut (respectively)
- No such definable function exists (continuity-monotonicity theorem)

Nonisolated Types, II

By similar logic, nonisolated nonsimple types always lead to faithful types:

- Nonsimple non-cuts are always faithful
- Nonsimple cuts can be faithful
- If a nonsimple cut is unfaithful, there is a nonsimple non-cut “nearby”

So that:

Proposition

If T has a nonisolated nonsimple type over \emptyset , then \cong_T is Borel complete.

Isolated Types, Example

Example

Let $M = (\mathbb{Q}, <, f)$, where $f(x, y, z) = x + y - z$.

Then $T = \text{Th}(M)$ has only one 1-type ($x = x$) and no unary functions, but has a binary function $(x, y) \mapsto 2x - y$. It is unfaithful.

Isolated Types, Example

Example

Let $M = (\mathbb{Q}, <, f)$, where $f(x, y, z) = x + y - z$.

Then $T = \text{Th}(M)$ has only one 1-type ($x = x$) and no unary functions, but has a binary function $(x, y) \mapsto 2x - y$. It is unfaithful.

An idea! If we add constants for “zero” and “one,” the resulting type $\{x > n : n \in \omega\}$ is a (faithful) non-cut with a unary function $x \mapsto 2x$.

Adding Parameters

Let $p \in S_1(\emptyset)$ be n -nonsimple, isolated. Let $\bar{a} = a_1 < \dots < a_n$ be from p .

Then $q \in S_1(\bar{a})$, given by “ x realizes p and $x > \text{cl}^p(\bar{a})$ ” is a nonsimple (faithful) non-cut.

Adding Parameters

Let $p \in S_1(\emptyset)$ be n -nonsimple, isolated. Let $\bar{a} = a_1 < \dots < a_n$ be from p .

Then $q \in S_1(\bar{a})$, given by “ x realizes p and $x > \text{cl}^p(\bar{a})$ ” is a nonsimple (faithful) non-cut.

Problem: If we compute M_I as before, the ladder $q(M_I)/\sim$ is isomorphic to I , but is not preserved under isomorphism.

Note that \cong for $T_{\bar{a}}$ is Borel complete.

A Canonical Tail

Lemma

Suppose \bar{a} and \bar{b} are n -tuples from p , and c, d are realizations of p . If $c, d > cl(\bar{a}\bar{b})$, then $c \sim_{\bar{a}} d$ if and only if $c \sim_{\bar{b}} d$.

Thus, $(p_{\bar{a}}(M), <)$ and $(p_{\bar{b}}(M), <)$ are isomorphic on a tail.

Therefore: if $M_I \cong M_J$, then $(I, <)$ and $(J, <)$ have an isomorphic tail.

A Nice Set of Linear Orders

Lemma

There is a Borel function $f : LO \rightarrow LO$ where for all $I, J \in LO$, TFAE:

- $I \cong J$
- $f(I) \cong f(J)$
- $f(I)$ and $f(J)$ are isomorphic on a tail

For the curious:

- Let $(X, <)$ be $\{0\} \cup \{q \in \mathbb{Q} : 1 \leq q \leq 2\} \cup \{3\}$.
- The map is $I \mapsto \omega \times [(I \times X) \cup \{\infty\}]$

Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.

Then \cong_T is Borel complete.

A proof:

- Let $I \in \text{LO}$; let $f(I)$ be as in the lemma

Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.

Then \cong_T is Borel complete.

A proof:

- Let $I \in \text{LO}$; let $f(I)$ be as in the lemma
- Let A_I be $\{a_1 \ll \dots \ll a_n\} \cup \{a_i : i \in f(I)\}$ as before; let $\bar{a} = a_1 \dots a_n$

Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.

Then \cong_T is Borel complete.

A proof:

- Let $I \in \text{LO}$; let $f(I)$ be as in the lemma
- Let A_I be $\{a_1 \ll \dots \ll a_n\} \cup \{a_i : i \in f(I)\}$ as before; let $\bar{a} = a_1 \dots a_n$
- Then $p(M_I) / \sim_{\bar{a}}$ is $(f(I), <)$

Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.

Then \cong_T is Borel complete.

A proof:

- Let $I \in \text{LO}$; let $f(I)$ be as in the lemma
- Let A_I be $\{a_1 \ll \dots \ll a_n\} \cup \{a_i : i \in f(I)\}$ as before; let $\bar{a} = a_1 \dots a_n$
- Then $p(M_I) / \sim_{\bar{a}}$ is $(f(I), <)$
- If $M_I \cong M_J$, then $(f(I), <)$ and $(f(J), <)$ are isomorphic on a tail

Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.

Then \cong_T is Borel complete.

A proof:

- Let $I \in \text{LO}$; let $f(I)$ be as in the lemma
- Let A_I be $\{a_1 \ll \dots \ll a_n\} \cup \{a_i : i \in f(I)\}$ as before; let $\bar{a} = a_1 \dots a_n$
- Then $p(M_I) / \sim_{\bar{a}}$ is $(f(I), <)$
- If $M_I \cong M_J$, then $(f(I), <)$ and $(f(J), <)$ are isomorphic on a tail
- So $I \mapsto M_{f(I)}$ is a Borel reduction

Recap

What we showed:

If T has a nonsimple type, then

- \cong_T is Borel complete

If T has no nonsimple type, then

- If $\kappa = 0$, then \cong_T is $(1, =)$
- If $1 \leq \kappa < \aleph_0$, then \cong_T is $(n, =)$ for some $3 \leq n < \omega$
- If $\kappa = \aleph_0$, then \cong_T is \cong_1 (reals)
- If $\kappa = 2^{\aleph_0}$, then \cong_T is \cong_2 (countable sets of reals)

where κ is the number of independent nonisolated types in $S_1(\emptyset)$.

Roadmap

1 O-Minimal Theories

2 Colored Linear Orders

3 Extensions

- Closed Questions
- Open Questions

Colored Linear Orders

A **typical language** is a language $L = \{<\} \cup \{P_n : n < \kappa\}$ for some $\kappa \leq \aleph_0$.

A **typical theory** is any complete L -theory T where $<$ is a linear order.

Theorem (M. Rubin)

Typical theories satisfy Vaught's conjecture. In particular:

If T is typical, then T has finitely many or continuum-many models.

If L is finite, T is \aleph_0 -categorical or has continuum-many models.

Extensions

Rubin's proof has been ripe for generalizations:

Corollary (Wagner, 1979)

Typical theories satisfy Martin's conjecture.

Corollary (Schirrmann, 1997)

Complete theories of linear orders are \aleph_0 -categorical or Borel complete.

Corollary (R.)

If T is typical, then \cong_T is one of:

$(1, =)$, $(n, =)$, \cong_1 , \cong_2 , or Borel complete.

If L is finite, T is \aleph_0 -categorical or Borel complete.

Convex Types

A **convex formula** $\phi(x, \bar{a})$ is one whose set of realizations is convex.

A **convex type** is a complete consistent set of convex formulas.

Let $IT(T)$ be the space of convex types over \emptyset .

Convex Types

A **convex formula** $\phi(x, \bar{a})$ is one whose set of realizations is convex.

A **convex type** is a complete consistent set of convex formulas.

Let $IT(T)$ be the space of convex types over \emptyset .

Definition / Theorem (Rubin)

The following are equivalent for $\mathcal{I} = (I, <, P_n)_{n \in \kappa}$ with two or more points:

- \mathcal{I} has no proper definable convex subsets
- The canonical embeddings $\mathcal{I} \rightarrow \mathcal{I} + \mathcal{I}$ are elementary
- The canonical embeddings $\mathcal{I} \rightarrow \sum_{x \in X} \mathcal{I}$ are elementary
- The above, but for any $\mathcal{J} \equiv \mathcal{I}$

Call such an \mathcal{I} **self-additive**.

A Condensation?

Let \mathcal{I} be typical. Say $a \sim b$ if there is a $\phi(x, y)$ such that:

- $\phi(I, a)$ is convex and bounded
- $\mathcal{I} \models \phi(a, a) \wedge \phi(b, a)$

Example: In $(L \times \mathbb{Z}, <)$, a/\sim is $\{S^n(a) : n \in \mathbb{Z}\}$

Example: \sim is not symmetric on (e.g.) $(\omega + \mathbb{Z}, <)$

A Condensation.

Proposition

If \mathcal{I} is self-additive, \sim is an equivalence relation with convex classes.

Proof of transitivity:

- Say $a \sim b$ and $b \sim c$

A Condensation.

Proposition

If \mathcal{I} is self-additive, \sim is an equivalence relation with convex classes.

Proof of transitivity:

- Say $a \sim b$ and $b \sim c$
- Let $\phi(y, x)$ and $\psi(z, y)$ be witnesses

A Condensation.

Proposition

If \mathcal{I} is self-additive, \sim is an equivalence relation with convex classes.

Proof of transitivity:

- Say $a \sim b$ and $b \sim c$
- Let $\phi(y, x)$ and $\psi(z, y)$ be witnesses
- WMA for all d : $\psi(z, d)$ is convex, bounded, and includes d

A Condensation.

Proposition

If \mathcal{I} is self-additive, \sim is an equivalence relation with convex classes.

Proof of transitivity:

- Say $a \sim b$ and $b \sim c$
- Let $\phi(y, x)$ and $\psi(z, y)$ be witnesses
- WMA for all d : $\psi(z, d)$ is convex, bounded, and includes d
- Let $\tau(z, x)$ be “ $\exists y (\phi(y, x) \wedge \tau(z, y))$ ”

A Condensation.

Proposition

If \mathcal{I} is self-additive, \sim is an equivalence relation with convex classes.

Proof of transitivity:

- Say $a \sim b$ and $b \sim c$
- Let $\phi(y, x)$ and $\psi(z, y)$ be witnesses
- WMA for all d : $\psi(z, d)$ is convex, bounded, and includes d
- Let $\tau(z, x)$ be " $\exists y (\phi(y, x) \wedge \tau(z, y))$ "
- $\tau(z, a)$ includes a and c and is convex

A Condensation.

Proposition

If \mathcal{I} is self-additive, \sim is an equivalence relation with convex classes.

Proof of transitivity:

- Say $a \sim b$ and $b \sim c$
- Let $\phi(y, x)$ and $\psi(z, y)$ be witnesses
- WMA for all d : $\psi(z, d)$ is convex, bounded, and includes d
- Let $\tau(z, x)$ be " $\exists y (\phi(y, x) \wedge \tau(z, y))$ "
- $\tau(z, a)$ includes a and c and is convex
- $\tau(z, a)$ is bounded, as witnessed by $I \prec I + I + I$ (**SA**)

Dichotomy for Self-Additive Orders, I

Lemma

Suppose $\mathcal{I} = (I, <, P_n)_{n \in \kappa}$ is self-additive and $S_1(\emptyset)$ is infinite.

Then $\text{Th}(\mathcal{I})$ is Borel complete.

Sketch of the proof:

- Let $p \in S_1(\emptyset)$ be nonisolated

Dichotomy for Self-Additive Orders, I

Lemma

Suppose $\mathcal{I} = (I, <, P_n)_{n \in \kappa}$ is self-additive and $S_1(\emptyset)$ is infinite.
Then $\text{Th}(\mathcal{I})$ is Borel complete.

Sketch of the proof:

- Let $p \in S_1(\emptyset)$ be nonisolated
- Let $\mathcal{A} \equiv \mathcal{I}$ omit p and $\mathcal{B} \equiv \mathcal{I}$ realize p at b

Dichotomy for Self-Additive Orders, I

Lemma

Suppose $\mathcal{I} = (I, <, P_n)_{n \in \kappa}$ is self-additive and $S_1(\emptyset)$ is infinite.

Then $\text{Th}(\mathcal{I})$ is Borel complete.

Sketch of the proof:

- Let $p \in S_1(\emptyset)$ be nonisolated
- Let $\mathcal{A} \equiv \mathcal{I}$ omit p and $\mathcal{B} \equiv \mathcal{I}$ realize p at b
- Let \mathcal{C} be $\mathcal{A} + (b/\sim) + \mathcal{A}$ – this models $\text{Th}(\mathcal{I})$ (EF game)

Dichotomy for Self-Additive Orders, I

Lemma

Suppose $\mathcal{I} = (I, <, P_n)_{n \in \kappa}$ is self-additive and $S_1(\emptyset)$ is infinite. Then $\text{Th}(\mathcal{I})$ is Borel complete.

Sketch of the proof:

- Let $p \in S_1(\emptyset)$ be nonisolated
- Let $\mathcal{A} \equiv \mathcal{I}$ omit p and $\mathcal{B} \equiv \mathcal{I}$ realize p at b
- Let \mathcal{C} be $\mathcal{A} + (b/\sim) + \mathcal{A}$ – this models $\text{Th}(\mathcal{I})$ (**EF game**)
- Then \mathcal{C} has exactly one \sim -class containing a realization of p ...

Dichotomy for Self-Additive Orders, I

Lemma

Suppose $\mathcal{I} = (I, <, P_n)_{n \in \kappa}$ is self-additive and $S_1(\emptyset)$ is infinite. Then $\text{Th}(\mathcal{I})$ is Borel complete.

Sketch of the proof:

- Let $p \in S_1(\emptyset)$ be nonisolated
- Let $\mathcal{A} \equiv \mathcal{I}$ omit p and $\mathcal{B} \equiv \mathcal{I}$ realize p at b
- Let \mathcal{C} be $\mathcal{A} + (b/\sim) + \mathcal{A}$ – this models $\text{Th}(\mathcal{I})$ (**EF game**)
- Then \mathcal{C} has exactly one \sim -class containing a realization of p ...
- ... and $L \mapsto L \times \mathcal{C}$ is a Borel reduction $\text{LO} \rightarrow \text{Mod}(T)$

Dichotomy for Self-Additive Orders, II

Lemma

Suppose \mathcal{I} is typical and $S_1(\emptyset)$ is finite. Then $\text{Th}(\mathcal{I})$ is \aleph_0 -categorical or Borel complete.

So if \mathcal{I} is self-additive, then $\text{Th}(\mathcal{I})$ is Borel complete or \aleph_0 -categorical.

The General Case, I

If $\mathfrak{C} \equiv \mathcal{I}$ is \aleph_0 -saturated, then for every $\Phi \in IT(T)$, $\Phi(\mathfrak{C})$ is self-additive.

Proposition

Let $\mathcal{M} \equiv \mathcal{N}$ be typical. Then $\mathcal{M} \cong \mathcal{N}$ if and only if, for every $\Phi \in IT(T)$, $\Phi(\mathcal{M}) \cong \Phi(\mathcal{N})$.

The General Case, I

If $\mathfrak{C} \equiv \mathcal{I}$ is \aleph_0 -saturated, then for every $\Phi \in IT(T)$, $\Phi(\mathfrak{C})$ is self-additive.

Proposition

Let $\mathcal{M} \equiv \mathcal{N}$ be typical. Then $\mathcal{M} \cong \mathcal{N}$ if and only if, for every $\Phi \in IT(T)$, $\Phi(\mathcal{M}) \cong \Phi(\mathcal{N})$.

Proposition

If $Th(\Phi(\mathfrak{C}))$ is Borel complete for some Φ , then $Th(\mathcal{I})$ is Borel complete.

Proof: Essentially, put models of $Th(\Phi(\mathfrak{C}))$ into an (otherwise unchanged) model of $Th(\mathcal{I})$.

The General Case, II

Proposition

For all $\mathcal{M} \prec \mathfrak{C}$, all $\Phi \in IT(T)$, there is \mathcal{N} where $\Phi(\mathcal{M}) \prec \mathcal{N}$ and \mathcal{N} is a convex subset of $\Phi(\mathfrak{C})$.

Lemma (Rosenstein; Mwesigye / Truss)

Let \mathcal{I} be countable and \aleph_0 -categorical. There are only finitely many convex subsets of \mathcal{I} up to isomorphism.

Proposition

If $\Phi \in IT(T)$ is isolated and $\Phi(\mathfrak{C})$ is not Borel complete, there is only one choice for $\Phi(\mathcal{M})$ up to \cong .

The General Case, III

Let T be a typical theory. Say T is locally easy if, for all $\Phi \in IT(T)$, $\text{Th}(\Phi(\mathfrak{C}))$ is \aleph_0 -categorical.

Theorem

If T is not locally easy, T is Borel complete.

If T is locally easy, then \cong_T is:

- $(1, =)$, if $\kappa = 0$
- $(n, =)$, for some $3 \leq n < \omega$, if $1 \leq \kappa < \aleph_0$
- \cong_1 , if $\kappa = \aleph_0$
- \cong_2 , if $\kappa = 2^{\aleph_0}$

where κ is the number of nonisolated convex types.

Note that convex types are always independent.

Roadmap

1 O-Minimal Theories

2 Colored Linear Orders

3 Extensions

- Closed Questions
- Open Questions

Possible Similarities, I

How strong is the analogy between the two cases?

Theorem

*If T is a colored linear order in a **finite** language, T is \aleph_0 -categorical or Borel complete.*

Possible Similarities, I

How strong is the analogy between the two cases?

Theorem

If T is a colored linear order in a *finite* language, T is \aleph_0 -categorical or Borel complete.

The analogous statement is **not** true for o-minimal theories:

Example

Let $\mathcal{M} = (\mathbb{R}^{\text{alg}}, <, f, g)$, where $f(x) = x + 1$, $g(x) = x + \sqrt{2}$, and both are restricted to $[0, 2]$.

$T = \text{Th}(\mathcal{M})$ is not small – $\text{cl}(\emptyset)$ has a perfect subset – but T has no nonsimple types, so is not Borel complete. So \cong_T is \cong_2 .

Possible Similarities, II

How strong is the analogy between the two cases?

Theorem

Let T be a Borel complete o-minimal theory. Then some restriction of T to a finite language is Borel complete.

Possible Similarities, II

How strong is the analogy between the two cases?

Theorem

Let T be a Borel complete o-minimal theory. Then some restriction of T to a finite language is Borel complete.

The analogous statement is **not** true for colored linear orders:

Example

Let T say $<$ is dense without endpoints, and the P_n are disjoint and dense in the order for all $n \in \omega$.

Then T is Borel complete – the set of “uncolored” elements can have any order type – but every restriction of T to a finite language is \aleph_0 -categorical.

Infinitary Logic?

All the theorems stated only work for **complete first-order theories**.
Do they apply for $L_{\omega_1, \omega}$ -sentences? If not, why not?

Infinitary Logic?

All the theorems stated only work for **complete first-order theories**.
Do they apply for $L_{\omega_1, \omega}$ -sentences? If not, why not?

Theorem (Steel)

Let $L = \{<\}$ and let $\Phi \in L_{\omega_1, \omega}$ be a sentence whose models are all **trees**.
Then Φ satisfies Vaught's conjecture.

The proof does not give rise to a structure theory for models of Φ .

Working with Trees

What if we generalize from linear orders to **trees**? Do we get the same theorem? Is there a similar proof?

Working with Trees

What if we generalize from linear orders to **trees**? Do we get the same theorem? Is there a similar proof?

Unknown, but two relevant theorems:

- Steel (1978): Complete theories of trees satisfy Vaught's conjecture.

Working with Trees

What if we generalize from linear orders to **trees**? Do we get the same theorem? Is there a similar proof?

Unknown, but two relevant theorems:

- Steel (1978): Complete theories of trees satisfy Vaught's conjecture.
- Barham (2015) gave a characterization of \aleph_0 -categorical \aleph_0 -colored trees in the same flavor as Rosenstein's.

Ordered Theories, I

Let $L = \{<, \dots\}$ and T be a complete theory making $<$ a linear order.

Question

Must \cong_T be among $(1, =)$, $(n, =)$, \cong_1 , \cong_2 , or be Borel complete?

The answer is **almost certainly no**, but what would an example look like?

Ordered Theories, I

Let $L = \{<, \dots\}$ and T be a complete theory making $<$ a linear order.

Question

Must \cong_T be among $(1, =)$, $(n, =)$, \cong_1 , \cong_2 , or be Borel complete?

The answer is **almost certainly no**, but what would an example look like?

Proposition

Let T be an ordered theory. Let $L' = \{E\} \cup L$, and let T' be any complete theory stating:

- $<$ is a linear order
- E is an equivalence relation with infinitely many classes, all convex
- The E -classes are independent models of T

Then T' is either \aleph_0 -categorical or Borel complete.

So the usual method of getting “jumps” doesn’t work here.

Ordered Theories, II

Let $L = \{<, \dots\}$ and T be a complete theory making $<$ a linear order.

Question

Must \cong_T be among $(1, =)$, $(n, =)$, \cong_1 , \cong_2 , or be Borel complete?

Ordered Theories, II

Let $L = \{<, \dots\}$ and T be a complete theory making $<$ a linear order.

Question

Must \cong_T be among $(1, =)$, $(n, =)$, \cong_1 , \cong_2 , or be Borel complete?

Supposing we wanted to imitate the previous proofs. The most important ingredient on the non-structure side is a **definable, convex equivalence relation** within convex types.

Question

Are there natural conditions on T which produce a definable convex equivalence relation within types (besides $x = x$)?

If so, we can “probably” do some omitting types magic and produce interesting quotient orders.