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Overview

Our aim is to show, for two large classes of ordered theories, that there is
a sharp dichotomy:

1 T has a local nonstructure property, leading ∼=T to be Borel
complete, or

2 Models are determined by finite choices, and ∼=T is one of:

I (1,=)
I (n,=) for some 3 ≤ n < ω
I (2ℵ0 ,=)
I ∼=2

depending on how many finite choices there are to make.

We then ask if this theorem can be extended to more general contexts.
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Roadmap

1 O-Minimal Theories

2 Colored Linear Orders

3 Extensions
Closed Questions
Open Questions
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The Nonstructure Hypothesis

Let T be an o-minimal theory.

A nonsimple type p ∈ S1(A) is a nonalgebraic type where there is a set
B ⊂ p(C) and an element b ∈ p(C) where b ∈ cl(AB) but b 6∈ B.

Our nonstructure hypothesis is the existence of a nonsimple type.

Proposition
There is a nonsimple type over some set iff there is one over the empty set.
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Theories with Structure, I

L. Mayer (1988) showed Vaught’s conjecture holds for o-minimal theories
with the following:

Lemma
Say T has no nonsimple types. Then M ∼= N if and only if, for every
p ∈ S1(∅), (p(M), <) ∼= (p(N), <).

Lemma
Say p ∈ S1(∅) is not nonsimple.
Then there are at most six choices for the order type of p(M).
If p is isolated, there is only one.
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Theories with Structure, II

Say T has no nonsimple types. Let κ be the number of independent,
nonisolated types in S1(∅). κ determines ∼=T :

1 If κ = 0, ∼=T is (1,=)
2 If 1 ≤ κ < ℵ0, then ∼=T is (n,=) for some 3 ≤ n ≤ 6κ
3 If κ = ℵ0, then ∼=T is (2ℵ0 ,=)
4 If κ = 2ℵ0 , then ∼=T is ∼=2
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Archimedean Equivalence

Let p ∈ S1(∅) be a type. Define ∼ on p(C) where, for a, b ∈ p(C),
a ∼ b iff there are a1, a2 ∈ clp(a) with a1 ≤ b ≤ a2

Proposition
∼ is an equivalence relation on p(C) with convex classes

Proof of transitivity:

Let a ∼ b and b ∼ c
Let f1(a) = a1 ≤ b ≤ f2(a) and g1(b) ≤ c ≤ g2(b)
By cell decomposition, fi and gi take p to p and are strictly increasing
Then g1(f1(a)) =≤ g1(b) ≤ c ≤ g2(b) ≤ g2(f2(a)), so a ∼ c

The other axioms are similarly verified.
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Theories without Structure: Faithful Types

p ∈ S1(∅) is faithful if, for all sets of pairwise ∼-inequivalent A ⊂ p(C),
If b ∈ clp(A), then b ∼ a for some a ∈ A.

Proposition
Say p ∈ S1(∅) is nonsimple and faithful. Then ∼=T is Borel complete.

A proof:

Let (I, <) be a nonempty countable linear order.
Let AI = {ai : i ∈ I} all realize p, and if i < j , then ai � aj

Let MI be prime over AI

The map I 7→ MI is Borel
p(MI)/ ∼ has order type (I, <), so this is a Borel reduction
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Nonisolated Types, I

Proposition
Non-cuts are faithful.

A proof:

Pick a minimal counterexample c < b1 < · · · < bn+1 where
f (b, bn+1) = c but c � b1 � · · · � bn+1

The function g(y) = f (b, y) takes tp(bn+1/b) to tp(c/b)
tp(bn+1/b) is a non-cut or atomic interval
tp(c/b) is a cut or non-cut (respectively)
No such definable function exists (continuity-monotonicity theorem)
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Nonisolated Types, II

By similar logic, nonisolated nonsimple types always lead to faithful types:

Nonsimple non-cuts are always faithful
Nonsimple cuts can be faithful
If a nonsimple cut is unfaithful, there is a nonsimple non-cut “nearby”

So that:

Proposition
If T has a nonisolated nonsimple type over ∅, then ∼=T is Borel complete.
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Isolated Types, Example

Example
Let M = (Q, <, f ), where f (x , y , z) = x + y − z .

Then T = Th(M) has only one 1-type (x = x) and no unary functions,
but has a binary function (x , y) 7→ 2x − y . It is unfaithful.

An idea! If we add constants for “zero” and “one,” the resulting type
{x > n : n ∈ ω} is a (faithful) non-cut with a unary function x 7→ 2x .
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Adding Parameters

Let p ∈ S1(∅) be n-nonsimple, isolated. Let a = a1 < · · · < an be from p.

Then q ∈ S1(a), given by “x realizes p and x > clp(a)” is a nonsimple
(faithful) non-cut.

Problem: If we compute MI as before, the ladder q(MI)/ ∼ is isomorphic
to I, but is not preserved under isomorphism.

Note that ∼= for Ta is Borel complete.
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A Canonical Tail

Lemma
Suppose a and b are n-tuples from p, and c, d are realizations of p.
If c, d > cl(ab), then c ∼a d if and only if c ∼b d.

Thus, (pa(M), <) and (pb(M), <) are isomorphic on a tail.

Therefore: if MI ∼= MJ , then (I, <) and (J , <) have an isomorphic tail.
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A Nice Set of Linear Orders

Lemma
There is a Borel function f : LO→ LO where for all I, J ∈ LO, TFAE:

I ∼= J
f (I) ∼= f (J)
f (I) and f (J) are isomorphic on a tail

For the curious:

Let (X , <) be {0} ∪ {q ∈ Q : 1 ≤ q ≤ 2} ∪ {3}.
The map is I 7→ ω × [(I × X ) ∪ {∞}]
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Completing the Proof

This gives us our final theorem:

Theorem
Suppose T is o-minimal with a nonsimple type.
Then ∼=T is Borel complete.

A proof:
Let I ∈ LO; let f (I) be as in the lemma

Let AI be {a1 � · · · � an}∪{ai : i ∈ f (I)} as before; let a = a1 · · · an

Then p(MI)/ ∼a is (f (I), <)
If MI ∼= MJ , then (f (I), <) and (f (J), <) are isomorphic on a tail
So I 7→ Mf (I) is a Borel reduction
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Recap

What we showed:

If T has a nonsimple type, then
∼=T is Borel complete

If T has no nonsimple type, then
If κ = 0, then ∼=T is (1,=)
If 1 ≤ κ < ℵ0, then ∼=T is (n,=) for some 3 ≤ n < ω

If κ = ℵ0, then ∼=T is ∼=1 (reals)
If κ = 2ℵ0 , then ∼=T is ∼=2 (countable sets of reals)

where κ is the number of independent nonisolated types in S1(∅).
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Colored Linear Orders

A typical language is a language L = {<} ∪ {Pn : n < κ} for some κ ≤ ℵ0.

A typical theory is any complete L-theory T where < is a linear order.

Theorem (M. Rubin)
Typical theories satisfy Vaught’s conjecture. In particular:
If T is typical, then T has finitely many or continuum-many models.
If L is finite, T is ℵ0-categorical or has continuum-many models.
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Extensions

Rubin’s proof has been ripe for generalizations:

Corollary (Wagner, 1979)
Typical theories satisfy Martin’s conjecture.

Corollary (Schirmann, 1997)
Complete theories of linear orders are ℵ0-categorical or Borel complete.

Corollary (R.)
If T is typical, then ∼=T is one of:

(1,=), (n,=), ∼=1, ∼=2, or Borel complete.
If L is finite, T is ℵ0-categorical or Borel complete.
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Convex Types

A convex formula φ(x , a) is one whose set of realizations is convex.
A convex type is a complete consistent set of convex formulas.

Let IT (T ) be the space of convex types over ∅.

Definition / Theorem (Rubin)
The following are equivalent for I = (I, <,Pn)n∈κ with two or more points:

I has no proper definable convex subsets
The canonical embeddings I → I + I are elementary
The canonical embeddings I →

∑
x∈X I are elementary

The above, but for any J ≡ I

Call such an I self-additive.
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A Condensation?

Let I be typical. Say a ∼ b if there is a φ(x , y) such that:
φ(I, a) is convex and bounded
I |= φ(a, a) ∧ φ(b, a)

Example: In (L× Z, <), a/ ∼ is {Sn(a) : n ∈ Z}
Example: ∼ is not symmetric on (e.g.) (ω + Z, <)
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A Condensation.

Proposition
If I is self-additive, ∼ is an equivalence relation with convex classes.

Proof of transitivity:
Say a ∼ b and b ∼ c

Let φ(y , x) and ψ(z , y) be witnesses
WMA for all d : ψ(z , d) is convex, bounded, and includes d
Let τ(z , x) be “∃y (φ(y , x) ∧ τ(z , y))”
τ(z , a) includes a and c and is convex
τ(z , a) is bounded, as witnessed by I ≺ I + I + I (SA)
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Dichotomy for Self-Additive Orders, I

Lemma
Suppose I = (I, <,Pn)n∈κ is self-additive and S1(∅) is infinite.
Then Th(I) is Borel complete.

Sketch of the proof:
Let p ∈ S1(∅) be nonisolated

Let A ≡ I omit p and B ≡ I realize p at b
Let C be A+ (b/ ∼) +A – this models Th(I) (EF game)
Then C has exactly one ∼-class containing a realization of p. . .
. . . and L 7→ L× C is a Borel reduction LO→ Mod(T )
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Dichotomy for Self-Additive Orders, II

Lemma
Suppose I is typical and S1(∅) is finite. Then Th(I) is ℵ0-categorical or
Borel complete.

So if I is self-additive, then Th(I) is Borel complete or ℵ0-categorical.
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The General Case, I

If C ≡ I is ℵ0-saturated, then for every Φ ∈ IT (T ), Φ(C) is self-additive.

Proposition
Let M≡ N be typical. Then M∼= N if and only if, for every Φ ∈ IT (T ),
Φ(M) ∼= Φ(N ).

Proposition
If Th(Φ(C)) is Borel complete for some Φ, then Th(I) is Borel complete.

Proof: Essentially, put models of Th(Φ(C)) into an (otherwise unchanged)
model of Th(I).
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The General Case, II

Proposition
For all M≺ C, all Φ ∈ IT (T ), there is N where Φ(M) ≺ N and N is a
convex subset of Φ(C).

Lemma (Rosenstein; Mwesigye / Truss)
Let I be countable and ℵ0-categorical. There are only finitely many
convex subsets of I up to isomorphism.

Proposition
If Φ ∈ IT (T ) is isolated and Φ(C) is not Borel complete, there is only one
choice for Φ(M) up to ∼=.
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The General Case, III

Let T be a typical theory. Say T is locally easy if, for all Φ ∈ IT (T ),
Th(Φ(C)) is ℵ0-categorical.

Theorem
If T is not locally easy, T is Borel complete.
If T is locally easy, then ∼=T is:

(1,=), if κ = 0
(n,=), for some 3 ≤ n < ω, if 1 ≤ κ < ℵ0
∼=1, if κ = ℵ0
∼=2, if κ = 2ℵ0

where κ is the number of nonisolated convex types.

Note that convex types are always independent.
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Possible Similarities, I

How strong is the analogy between the two cases?

Theorem
If T is a colored linear order in a finite language, T is ℵ0-categorical or
Borel complete.

The analogous statement is not true for o-minimal theories:

Example
Let M =

(
Ralg, <, f , g

)
, where f (x) = x + 1, g(x) = x +

√
2, and both

are restricted to [0, 2].

T = Th(M) is not small – cl(∅) has a perfect subset – but T has no
nonsimple types, so is not Borel complete. So ∼=T is ∼=2.
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Possible Similarities, II

How strong is the analogy between the two cases?

Theorem
Let T be a Borel complete o-minimal theory. Then some restriction of T
to a finite language is Borel complete.

The analogous statement is not true for colored linear orders:

Example
Let T say < is dense without endpoints, and the Pn are disjoint and dense
in the order for all n ∈ ω.

Then T is Borel complete – the set of “uncolored” elements can have any
order type – but every restriction of T to a finite language is
ℵ0-categorical.

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 30 / 34



Possible Similarities, II

How strong is the analogy between the two cases?

Theorem
Let T be a Borel complete o-minimal theory. Then some restriction of T
to a finite language is Borel complete.

The analogous statement is not true for colored linear orders:

Example
Let T say < is dense without endpoints, and the Pn are disjoint and dense
in the order for all n ∈ ω.

Then T is Borel complete – the set of “uncolored” elements can have any
order type – but every restriction of T to a finite language is
ℵ0-categorical.

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 30 / 34



Infinitary Logic?

All the theorems stated only work for complete first-order theories.
Do they apply for Lω1,ω-sentences? If not, why not?

Theorem (Steel)
Let L = {<} and let Φ ∈ Lω1,ω be a sentence whose models are all trees.
Then Φ satisfies Vaught’s conjecture.

The proof does not give rise to a structure theory for models of Φ.
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Working with Trees

What if we generalize from linear orders to trees? Do we get the same
theorem? Is there a similar proof?

Unknown, but two relevant theorems:

Steel (1978): Complete theories of trees satisfy Vaught’s conjecture.
Barham (2015) gave a characterization of ℵ0-categorical ℵ0-colored
trees in the same flavor as Rosenstein’s.
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Ordered Theories, I
Let L = {<, . . .} and T be a complete theory making < a linear order.

Question
Must ∼=T be among (1,=), (n,=), ∼=1, ∼=2, or be Borel complete?

The answer is almost certainly no, but what would an example look like?

Proposition
Let T be an ordered theory. Let L′ = {E} ∪ L, and let T ′ be any complete
theory stating:

< is a linear order
E is an equivalence relation with infinitely many classes, all convex
The E-classes are independent models of T

Then T ′ is either ℵ0-categorical or Borel complete.

So the usual method of getting “jumps” doesn’t work here.
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Ordered Theories, II

Let L = {<, . . .} and T be a complete theory making < a linear order.

Question
Must ∼=T be among (1,=), (n,=), ∼=1, ∼=2, or be Borel complete?

Supposing we wanted to imitate the previous proofs. The most important
ingredient on the non-structure side is a definable, convex equivalence
relation within convex types.

Question
Are there natural conditions on T which produce a definable convex
equivalence relation within types (besides x = x)?

If so, we can “probably” do some omitting types magic and produce
interesting quotient orders.

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 34 / 34



Ordered Theories, II

Let L = {<, . . .} and T be a complete theory making < a linear order.

Question
Must ∼=T be among (1,=), (n,=), ∼=1, ∼=2, or be Borel complete?

Supposing we wanted to imitate the previous proofs. The most important
ingredient on the non-structure side is a definable, convex equivalence
relation within convex types.

Question
Are there natural conditions on T which produce a definable convex
equivalence relation within types (besides x = x)?

If so, we can “probably” do some omitting types magic and produce
interesting quotient orders.

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 34 / 34


	O-Minimal Theories
	Colored Linear Orders
	Extensions
	Closed Questions
	Open Questions


