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Overview

Our aim is to show, for two large classes of ordered theories, that there is
a sharp dichotomy:

© T has a local nonstructure property, leading =1 to be Borel
complete, or
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Overview

Our aim is to show, for two large classes of ordered theories, that there is
a sharp dichotomy:

© T has a local nonstructure property, leading =1 to be Borel
complete, or

@ Models are determined by finite choices, and =1 is one of:

> (1,=)

» (n,=) forsome3<n<w
> (2N0a:)

> 22

depending on how many finite choices there are to make.

We then ask if this theorem can be extended to more general contexts.
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Roadmap

© O-Minimal Theories
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The Nonstructure Hypothesis

Let T be an o-minimal theory.

A nonsimple type p € 51(A) is a nonalgebraic type where there is a set
B C p(€) and an element b € p(€) where b € cl(AB) but b ¢ B.
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The Nonstructure Hypothesis

Let T be an o-minimal theory.

A p € S1(A) is a nonalgebraic type where there is a set
B C p(€) and an element b € p(€) where b € cl(AB) but b ¢ B.

Our nonstructure hypothesis is the existence of a nonsimple type.

Proposition
There is a nonsimple type over some set iff there is one over the empty set.J
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Theories with Structure, |

L. Mayer (1988) showed Vaught's conjecture holds for o-minimal theories
with the following:

Lemma
Say T has no nonsimple types. Then M = N if and only if, for every

p € Si1(0), (p(M), <) = (p(N), <).

Lemma

Say p € S1(0) is not nonsimple.
Then there are at most six choices for the order type of p(M).
If p is isolated, there is only one.
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Theories with Structure, Il

Say T has no nonsimple types. Let k be the number of independent,
nonisolated types in 51(0). ~ determines =7
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Theories with Structure, Il

Say T has no nonsimple types. Let k be the number of independent,
nonisolated types in S1(0). x determines X1:

Q Ifk=0 Z7is (1,=)

@ If 1 <k < Ng, then Z7 is (n,=) for some 3 < n < 6"

O If kK = Ng, then &1 is (2%, =)

Q If k =28 then X7 is &,
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Archimedean Equivalence

Let p € $1(0) be a type. Define ~ on p(€) where, for a, b € p(€),
a ~ b iff there are a1, ap € clP(a) with a3 < b < ay

Proposition
~ is an equivalence relation on p(€) with convex classes J
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Archimedean Equivalence

Let p € $1(0) be a type. Define ~ on p(€) where, for a, b € p(€),
iff there are a1, a» € clP(a) with a1 < b < ap

Proposition J

~ is an equivalence relation on p(€) with convex classes

Leta~band b~c

Let fi(a) = a1 < b < f,(a) and g1(b) < ¢ < g(b)

By cell decomposition, f; and g; take p to p and are strictly increasing
Then g1(f1(a)) =< g1(b) < c < g2(b) < g2(f2(a)). soa~c
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Archimedean Equivalence

Let p € $1(0) be a type. Define ~ on p(€) where, for a, b € p(€),
iff there are a1, a» € clP(a) with a1 < b < ap

Proposition J

~ is an equivalence relation on p(€) with convex classes

Leta~band b~c

Let fi(a) = a1 < b < f(a) and g1(b) < ¢ < g2(b)

By cell decomposition, f; and g; take p to p and are strictly increasing
Then g1(f1(a)) =< g1(b) < c < g2(b) < g2(f2(a)). soa~c

The other axioms are similarly verified.
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Theories without Structure: Faithful Types

p € S1(0) is faithful if, for all sets of pairwise ~-inequivalent A C p(&),
If b € clP(A), then b ~ a for some a € A.
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pe Si(0)is if, for all sets of pairwise ~-inequivalent A C p(&),
If b € clP(A), then b ~ a for some a € A.

Proposition
Say p € 51(0) is nonsimple and . Then =7 is Borel complete. J

A proof:
o Let (/,<) be a nonempty countable linear order.
o Let Ay ={aj: i€ I} all realize p, and if i < j, then a; < a;
o Let M; be prime over A,
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Theories without Structure: Faithful Types

pe Si(0)is if, for all sets of pairwise ~-inequivalent A C p(&),
If b € clP(A), then b ~ a for some a € A.

Proposition
Say p € 51(0) is nonsimple and . Then =t is Borel complete. J

A proof:

Let (/, <) be a nonempty countable linear order.

Let A; = {a; : i € I} all realize p, and if i < j, then a; < a;
Let M, be prime over A,

The map | — M; is Borel

p(My)/ ~ has order type (/, <), so this is a Borel reduction
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Nonisolated Types, |

Proposition

Non-cuts are faithful.

A proof:

@ Pick a minimal counterexample ¢ < by < --- < bp41 where
f(b,bpy1) =cbut c < by < -+ < bpy1
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Nonisolated Types, |

Proposition
Non-cuts are faithful. J

A proof:

@ Pick a minimal counterexample ¢ < by < --- < bp41 where
f(b, bn+1) =chutcekgs hh <K b,,+1

@ The function g(y) = f(b, y) takes tp(b,+1/b) to tp(c/b)

@ tp(b,11/b) is a non-cut or atomic interval

e tp(c/b) is a cut or non-cut (respectively)
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Nonisolated Types, |

Proposition
Non-cuts are faithful. J

A proof:
@ Pick a minimal counterexample ¢ < by < --- < bp41 where
f(b,bpr1) =cbut c < by < -+ K bpy
@ The function g(y) = f(b, y) takes tp(b,+1/b) to tp(c/b)
@ tp(b,11/b) is a non-cut or atomic interval
e tp(c/b) is a cut or non-cut (respectively)

@ No such definable function exists (continuity-monotonicity theorem)
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Nonisolated Types, Il

By similar logic, nonisolated nonsimple types always lead to faithful types:

@ Nonsimple non-cuts are always faithful
@ Nonsimple cuts can be faithful

@ If a nonsimple cut is unfaithful, there is a nonsimple non-cut “nearby”

So that:
Proposition

If T has a nonisolated nonsimple type over (), then =1 is Borel complete. J
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Isolated Types, Example

Example
Let M = (Q, <, f), where f(x,y,z) =x+y — z. J

Then T = Th(M) has only one 1-type (x = x) and no unary functions,
but has a binary function (x,y) — 2x — y. It is unfaithful.
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Isolated Types, Example

Example
Let M = (Q, <, f), where f(x,y,z) =x+y — z. J

Then T = Th(M) has only one 1-type (x = x) and no unary functions,
but has a binary function (x,y) — 2x — y. It is unfaithful.

An idea! If we add constants for “zero” and “one,” the resulting type
{x > n:né€w}is a (faithful) non-cut with a unary function x — 2x.
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Adding Parameters

Let p € $1(0) be n-nonsimple, isolated. Let 3= a; < --- < a, be from p.

Then g € 51(3), given by “x realizes p and x > clP(3)" is a nonsimple
(faithful) non-cut.
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Adding Parameters

Let p € $1(0) be n-nonsimple, isolated. Let 3= a; < --- < a, be from p.
Then g € 51(3), given by “x realizes p and x > clP(3)" is a nonsimple
(faithful) non-cut.

Problem: If we compute M, as before, the ladder g(M;)/ ~ is isomorphic

to /, but is not preserved under isomorphism.

Note that = for T3 is Borel complete.
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A Canonical Tail

Lemma

Suppose @ and b are n-tuples from p, and c,d are realizations of p.
If c,d > cl(ab), then ¢ ~3 d if and only if c ~% d.

Thus, (pz(M), <) and (pz(M), <) are isomorphic on a tail.

Therefore: if M; =2 My, then (/, <) and (J, <) have an isomorphic tail.
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A Nice Set of Linear Orders

Lemma

There is a Borel function f : LO — LO where for all I, J € LO, TFAE:
o /=
o f()=1(J)

e f(I) and f(J) are isomorphic on a tail

For the curious:
o Let (X,<)be{0}U{qeQ:1<qg<2}U{3}.
@ The mapis [ — w x [(I x X) U {o0}]
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Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.
Then =+ is Borel complete.

A proof:
o Let / € LO; let f(/) be as in the lemma

Richard Rast (University of Maryland)
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o Let / € LO; let f(/) be as in the lemma

o Let Ajbe {a1 < - < ap}U{a;j: i€ f(l)} as before; leta=a;---a,
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Completing the Proof

This gives us our final theorem:

Theorem

Suppose T is o-minimal with a nonsimple type.
Then =+ is Borel complete.

Let / € LO; let (/) be as in the lemma

Let Ay be {a1 < --- < ap}U{a;: i € f(I)} as before; let a=a; - - ap
Then p(M;)/ ~5 is (F(/), <)

If M; = M, then (f(/),<) and (f(J), <) are isomorphic on a tail

So '+ Mgy is a Borel reduction
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Recap

What we showed:

If T has a nonsimple type, then

@ =71 is Borel complete

If T has no nonsimple type, then
o If k=0, then =71 is (1,=)
o If 1 <k < N, then Zis (n,=) for some 3 < n<w
o If Kk =N, then = is =1 (reals)
o If k = 2% then 27 is 2, (countable sets of reals)

where £ is the number of independent nonisolated types in S;(0).
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Roadmap

© Colored Linear Orders
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Colored Linear Orders

A is a language L = {<}U{P,: n < k} for some x < Ry.

A is any complete L-theory T where < is a linear order.

Theorem (M. Rubin)

Typical theories satisfy Vaught's conjecture. In particular:
If T is typical, then T has finitely many or continuum-many models.
If L is finite, T is Ng-categorical or has continuum-many models.
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Extensions

Rubin’s proof has been ripe for generalizations:

Corollary (Wagner, 1979)

Typical theories satisfy Martin’s conjecture.

Corollary (Schirmann, 1997)

Complete theories of linear orders are No-categorical or Borel complete.

Corollary (R.)
If T is typical, then =1 is one of:
(1,=), (n,=), =1, =», or Borel complete.
If L is finite, T is No-categorical or Borel complete.
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Convex Types

A convex formula ¢(x,3) is one whose set of realizations is convex.
A convex type is a complete consistent set of convex formulas.
Let /T(T) be the space of convex types over (.
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Convex Types

A ¢(x,3) is one whose set of realizations is convex.
A is a complete consistent set of convex formulas.
Let /T(T) be the space of convex types over (.

Definition / Theorem (Rubin)
The following are equivalent for T = (I, <, Pp)nes with two or more points:

@ 7 has no proper definable convex subsets

@ The canonical embeddings T — I + I are elementary

@ The canonical embeddings T — > .x 1 are elementary
@ The above, but for any J =1

Call such anT
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A Condensation?

Let Z be typical. Say a ~ b if there is a ¢(x, y) such that:

@ ¢(/,a) is convex and bounded

o Tk ¢(a,a) A d(b, )

Example: In (L X Z,<), a/ ~is {S"(a) : n € Z}
Example: ~ is not symmetric on (e.g.) (w+ Z, <)
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A Condensation.

Proposition
If T is self-additive, ~ is an equivalence relation with convex classes. J

Proof of transitivity:
@ Saya~band b~c
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A Condensation.

Proposition
If T is self-additive, ~ is an equivalence relation with convex classes. J

Proof of transitivity:
@ Saya~band b~c
o Let ¢(y,x) and ¥(z,y) be witnesses
e WMA for all d: 1(z, d) is convex, bounded, and includes d

o Let 7(z,x) be “Jy (¢(y,x) A7(z,y))"
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A Condensation.

Proposition
If T is self-additive, ~ is an equivalence relation with convex classes. J

Proof of transitivity:
@ Saya~band b~c
Let ¢(y, x) and ¢(z, y) be witnesses
WMA for all d: 9(z,d) is convex, bounded, and includes d
Let 7(z, x) be "3y (¢(y, x) A7(z,y))"
7(z, a) includes a and ¢ and is convex
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A Condensation.

Proposition J

If L is self-additive, ~ is an equivalence relation with convex classes.

Saya~band b~c

Let ¢(y, x) and ¢(z, y) be witnesses

WMA for all d: 9(z,d) is convex, bounded, and includes d
Let 7(z, x) be "3y (¢(y, x) A7(z,y))"

7(z, a) includes a and ¢ and is convex

7(z, a) is bounded, as witnessed by | < [+ [+ 1 (SA)
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Dichotomy for Self-Additive Orders, |

Lemma

Suppose I = (I, <, Py)nex is self-additive and S1(0) is infinite.
Then Th(Z) is Borel complete.

Sketch of the proof:
o Let p € 5:(0) be nonisolated
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Lemma

Suppose I = (I, <, Py)nex is self-additive and S1(0) is infinite.
Then Th(Z) is Borel complete.

Sketch of the proof:
o Let p € 5:(0) be nonisolated
o Let A=Z7 omit p and B=1T realize p at b
o Let C be A+ (b/ ~)+ A — this models Th(Z) (EF game)
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Dichotomy for Self-Additive Orders, |

Lemma

Suppose I = (I, <, Py)nex is self-additive and S1(0) is infinite.
Then Th(Z) is Borel complete.

Sketch of the proof:
o Let p € 5:(0) be nonisolated
o Let A=Z7 omit p and B=1T realize p at b
o Let C be A+ (b/ ~)+ A — this models Th(Z) (EF game)
@ Then C has exactly one ~-class containing a realization of p...

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 23 /34



Dichotomy for Self-Additive Orders, |

Lemma

Suppose I = (I, <, Py)nex is self-additive and S1(0) is infinite.
Then Th(Z) is Borel complete.

Let p € 51(0) be nonisolated

Let A =7 omit p and B =7 realize p at b

Let C be A+ (b/ ~) + A — this models Th(Z) (EF game)
Then C has exactly one ~-class containing a realization of p. ..
...and L+— L x C is a Borel reduction LO — Mod(T)
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Dichotomy for Self-Additive Orders, Il

Lemma
Suppose T is typical and S1(0) is finite. Then Th(Z) is No-categorical or
Borel complete.

So if Z is self-additive, then Th(Z) is Borel complete or Ro-categorical.
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The General Case, |

If € =7 is Nop-saturated, then for every ® € IT(T), ®(C) is self-additive.

Proposition

Let M = N be typical. Then M = N if and only if, for every ® € IT(T),
d(M) = d(N).
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The General Case, |

If € =7 is Nop-saturated, then for every ® € IT(T), ®(C) is self-additive.

Proposition

Let M = N be typical. Then M = N if and only if, for every & € IT(T),
(M) = d(N).

Proposition
If Th(®(€&)) is Borel complete for some &, then Th(Z) is Borel complete. J

. Essentially, put models of Th(®(Z)) into an (otherwise unchanged)
model of Th(Z).
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The General Case, Il

Proposition

For all M < €, all ® € IT(T), there is N where (M) < N and N is a
convex subset of ¢(&).

Lemma (Rosenstein; Mwesigye / Truss)

Let T be countable and Ng-categorical. There are only finitely many
convex subsets of I up to isomorphism.

Proposition

If & € IT(T) is isolated and ®(€&) is not Borel complete, there is only one
choice for ®(M) up to =.

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 26 / 34



The General Case, Il

Let T be a typical theory. Say T is locally easy if, for all ® € IT(T),
Th(®(€)) is No-categorical.
Theorem

If T is not locally easy, T is Borel complete.
If T is locally easy, then =1 is:

o (1,=),ifr=0

e (n,=), forsome3 <n<w,ifl <k <N
@ X4, ifk =1Np

0 &, jifr=2%

where k is the number of nonisolated convex types.

Note that convex types are always independent.
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Roadmap

© Extensions
@ Closed Questions
@ Open Questions
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Possible Similarities, |

How strong is the analogy between the two cases?

Theorem

If T is a colored linear order in a finite language, T is No-categorical or
Borel complete.
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Possible Similarities, |

How strong is the analogy between the two cases?

Theorem

If T is a colored linear order in a language, T is Ng-categorical or
Borel complete.

The analogous statement is not true for o-minimal theories:

Example

Let M = (Ralg7 <, f,g), where f(x) = x + 1, g(x) = x + v/2, and both
are restricted to [0, 2].

T = Th(M) is not small — cl(() has a perfect subset — but T has no
nonsimple types, so is not Borel complete. So =1 is =».
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Possible Similarities, |l

How strong is the analogy between the two cases?

Theorem

Let T be a Borel complete o-minimal theory. Then some restriction of T
to a finite language is Borel complete.
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Possible Similarities, |l

How strong is the analogy between the two cases?

Theorem
Let T be a Borel complete o-minimal theory. Then some restriction of T
to a finite language is Borel complete.

The analogous statement is not true for colored linear orders:

Example

Let T say < is dense without endpoints, and the P, are disjoint and dense
in the order for all n € w.

Then T is Borel complete — the set of “uncolored” elements can have any
order type — but every restriction of T to a finite language is
Ng-categorical.
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Infinitary Logic?

All the theorems stated only work for complete first-order theories.
Do they apply for L, «,-sentences? If not, why not?
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Infinitary Logic?

All the theorems stated only work for complete first-order theories.
Do they apply for L, «,-sentences? If not, why not?

Theorem (Steel)

Let L ={<} and let ® € L, ., be a sentence whose models are all trees.
Then & satisfies Vaught’s conjecture.

The proof does not give rise to a structure theory for models of .
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Working with Trees

What if we generalize from linear orders to trees? Do we get the same
theorem? |s there a similar proof?

Richard Rast (University of Maryland) The Borel Complexity of Isomorphism June 4, 2015 32 /34



Working with Trees

What if we generalize from linear orders to ? Do we get the same
theorem? |s there a similar proof?

Unknown, but two relevant theorems:

o Steel (1978): Complete theories of trees satisfy Vaught's conjecture.
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Working with Trees

What if we generalize from linear orders to

? Do we get the same
theorem? |s there a similar proof?

Unknown, but two relevant theorems:

o Steel (1978): Complete theories of trees satisfy Vaught's conjecture.

e Barham (2015) gave a characterization of Ng-categorical Ro-colored
trees in the same flavor as Rosenstein'’s.
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Ordered Theories, |
Let L ={<,...} and T be a complete theory making < a linear order.

Question J

Must 21 be among (1,=), (n,=), =1, =, or be Borel complete?

The answer is almost certainly no, but what would an example look like?
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Ordered Theories, |

Let L ={<,...} and T be a complete theory making < a linear order.

Question

Must 21 be among (1,=), (n,=), =1, =, or be Borel complete?

The answer is almost certainly no, but what would an example look like?
Proposition

Let T be an ordered theory. Let L' = {E}UL, and let T’ be any complete
theory stating:

@ < js a linear order
e E is an equivalence relation with infinitely many classes, all convex

@ The E-classes are independent models of T

Then T’ is either No-categorical or Borel complete.

So the usual method of getting “jumps” doesn’t work here.
The Borel Complexity of Isomorphism June 4, 2015 33 /34



Ordered Theories, |l

Let L ={<,...} and T be a complete theory making < a linear order.

Question J

Must =1 be among (1,=), (n,=), =1, =, or be Borel complete?
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Ordered Theories, Il

Let L ={<,...} and T be a complete theory making < a linear order.

Question J

Must =1 be among (1,=), (n,=), =1, =, or be Borel complete?

Supposing we wanted to imitate the previous proofs. The most important
ingredient on the non-structure side is a definable, convex equivalence
relation within convex types.

Question

Are there natural conditions on T which produce a definable convex
equivalence relation within types (besides x = x)?

If so, we can “probably” do some omitting types magic and produce
interesting quotient orders.
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