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Why Logic?

Is there any interesting theorem which is not a logic theorem, but which
has a nice logic proof?

Theorem (Ax)
Let f : Cn → Cn be a polynomial. If f is injective, then f is surjective.

(converse is false)
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First Order Logic

First order sentences have a language, like L = {0, 1,+, ·}.
Sentences are things like:

∀x∃y (x = 0 ∨ x · y = 1)
∀x∀y∀z ((x · y) · z = x · (y · z))

We quantify over elements of the structure, but not sets, functions, etc.

So we can’t say “for all polynomials f , . . . .”
What to do?
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First Order Logic is Expressive
Example: every injective polynomial of degree 3 from F 2 to F 2 is
surjective (A2,3):

∀c1,00∀c1,10· · · ∀c1,33 ∀c2,00∀c2,10 · · · ∀c2,33∀x1∀x2∀y1∀y2

x 6= y →
∨

i=1,2
(p(x , c i ) 6= p(y , c2))


→ (∀y1∀y2∃x1∃x2 [p(x , c1) = y1 ∧ p(x , c2) = y2])

Here p(x , c i ) is an abbreviation for:

ci ,00 + ci ,10 · x1 + ci ,20 · x1 · x1 + · · ·+ ci ,33 · x1 · x1 · x1 · x2 · x2 · x2

The point is that A2,3 is first-order. We never actually use the precise
sentences. But we can make An,k for any n and k.
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The Only Theorem You Need

Theorem (Gödel, Löwenheim, Skolem)
Let Σ be a set of first-order sentences in some fixed language L.
If every finite subset of Σ has an infinite model,

then Σ has a model of every infinite cardinality.

This is sometimes called the compactness theorem, combined with the
upward and downward Löwenheim-Skolem theorems.
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Fun with Compactness

Theorem
Let Σ be the axioms for “algebraically closed fields of characteristic p”
(p is prime or zero). Then Σ is complete:

for every sentence σ, either Σ |= σ or Σ |= ¬σ.

Proof:

If not, both Σ ∪ {σ} and Σ ∪ {¬σ} have a model of size continuum
[compactness]
There is only one algebraically closed field of characteristic p of that
size [transcendence bases exist]
The models from point 1 must be isomorphic, contradiction!
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Proving Ax’s Theorem - I

Lemma
If Ax’s theorem is true for algebraically closed fields of positive
characteristic, it’s true for C.

Proof:

Enough to show ACF ∪ {n 6= 0 : n ∈ N} ∪ {An,k : n, k ∈ N} is
consistent [completeness for ACF0]
Enough to show every finite subset is consistent [compactness]
The finite subset says (at most) the characteristic is at least p
Any large positive characteristic ACF models the finite subset [Ax for
ACFp]
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Proving Ax’s Theorem - II

Lemma
If Ax’s theorem is true for Fp, it’s true for all algebraically closed fields of
characteristic p.

Proof:

Say An,k fails on some F |= ACFp

F and Fp model the same sentences [completeness for ACFp]
So An,k fails on Fp, contradiction!
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Proving Ax’s Theorem - III
This turns out to be our “technical lemma:”

Fact
Every injective function from a finite set to itself is surjective.

Lemma
Ax’s theorem holds for Fp.

Proof:

Fp is the union of all the Fpm .
Pick an injective polynomial f from Fp

n to Fp
n

Let b be from Fp
n

Let m be large enough that Fpm contains b and the coefficients of f
f : Fn

pm → Fn
pm is injective, so surjective

There is an a ∈ Fn
pm ⊂ Fp

n where f (a) = b
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Bringing It All Together

So Ax’s theorem is true for C essentially because injective functions on
finite sets are surjective.

Exercise
Figure out why the proof doesn’t also show the converse of Ax’s theorem,
which is false.

Exercise
Using the same proof, prove Ax’s theorem for varieties over algebraically
closed fields.
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