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Why Logic?

Is there any interesting theorem which is not a logic theorem, but which
has a nice logic proof?
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Why Logic?

Is there any interesting theorem which is not a logic theorem, but which
has a nice logic proof?

Theorem (Ax)
Let f : C" — C" be a polynomial. If f is injective, then f is surjective. J

(converse is false)
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First Order Logic

First order sentences have a language, like L = {0,1,+,}.
Sentences are things like:

Vxdy (x=0Vx-y=1)
VxVyVz ((x-y)-z=x-(y-2))

We quantify over elements of the structure, but not sets, functions, etc.
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First Order Logic

First order sentences have a language, like L = {0,1,+,}.
Sentences are things like:

Vxdy (x=0Vx-y=1)
VxVyVz ((x-y)-z=x-(y-2))

We quantify over elements of the structure, but not sets, functions, etc.

So we can't say “for all polynomials £, ...."
What to do?
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First Order Logic is Expressive

Example: every injective polynomial of degree 3 from F? to F? is
surjective (A2 3):
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First Order Logic is Expressive
Example: every injective polynomial of degree 3 from F? to F? is

surjective (A2 3):

Vc1,00Vcr,10- - V1,33 Veo,00VE2,10 -+ - V2,33

VxVxoVyVys |x £y = \/ (p(X,€) # p(¥, c2))
i=1,2
— (V1Vy23x13x2 [p(X, 1) = y1 A p(X, C2) = y2])

Here p(X,<;) is an abbreviation for:

G0+ Ci10- X1+ Ci0 X1 X1+ -+ Ci33- X1 X1 X1-X2- X2 X2
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First Order Logic is Expressive

Example: every injective polynomial of degree 3 from F? to F? is
surjective (A2 3):

i=1,2

(VXNXzV)/N)Q [X #y— \/ (p(x,<) # p(v, Cz))])
— (W1Vy23x13x [p(X, C1) = y1 A p(X, C2) = y2])
Here p(X,<;) is an abbreviation for:
Cioo +Ci1o0- X1+ Ci20 X1 X1+ -+ Ci33- X1 X1 XL X2 X2+ X2

The point is that Ap 3 is first-order. We the precise
sentences. But we can make A, x for any n and k.
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The Only Theorem You Need

Theorem (Godel, Léwenheim, Skolem)

Let X be a set of first-order sentences in some fixed language L.
If every finite subset of > has an infinite model,
then ¥ has a model of every infinite cardinality.

This is sometimes called the compactness theorem, combined with the
upward and downward Léwenheim-Skolem theorems.
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Fun with Compactness

Theorem

Let ¥ be the axioms for “algebraically closed fields of characteristic p”
(p is prime or zero). Then ¥ is complete:

for every sentence o, either ¥ =0 or ¥ |= —o.
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Fun with Compactness

Theorem

Let ¥ be the axioms for “algebraically closed fields of characteristic p”
(p is prime or zero). Then ¥ is complete:

for every sentence o, either ¥ =0 or ¥ |= —o.

o If not, both X U {o} and X U {0} have a model of size continuum
[compactness]
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Fun with Compactness

Theorem

Let ¥ be the axioms for “algebraically closed fields of characteristic p”
(p is prime or zero). Then ¥ is complete:

for every sentence o, either ¥ =0 or ¥ |= —o.

o If not, both X U {o} and X U {0} have a model of size continuum
[compactness]

@ There is only one algebraically closed field of characteristic p of that
size [transcendence bases exist]
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Fun with Compactness

Theorem

Let ¥ be the axioms for “algebraically closed fields of characteristic p”
(p is prime or zero). Then ¥ is complete:
for every sentence o, either ¥ =0 or ¥ |= —o.

o If not, both X U {o} and X U {0} have a model of size continuum
[compactness]

@ There is only one algebraically closed field of characteristic p of that
size [transcendence bases exist]

@ The models from point 1 must be isomorphic, contradiction!
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Proving Ax’'s Theorem - |

Lemma

If Ax’s theorem is true for algebraically closed fields of positive
characteristic, it's true for C.
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Proving Ax’'s Theorem - |

Lemma

If Ax’s theorem is true for algebraically closed fields of positive
characteristic, it's true for C.

Proof:

o Enough to show ACFU{n#0:ne N} U{A,x:n ke N}is
consistent [completeness for ACFy]
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Proving Ax’'s Theorem - |

Lemma

If Ax’s theorem is true for algebraically closed fields of positive
characteristic, it's true for C.

Proof:

o Enough to show ACFU{n#0:ne N} U{A,x:n ke N}is
consistent [completeness for ACFy]

@ Enough to show every finite subset is consistent [compactness]
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Proving Ax’'s Theorem - |

Lemma
If Ax’s theorem is true for algebraically closed fields of positive
characteristic, it's true for C.

o Enough to show ACFU{n#0:ne N} U{A,x:n ke N}is
consistent [completeness for ACFy]
@ Enough to show every finite subset is consistent [compactness]

@ The finite subset says (at most) the characteristic is at least p
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Proving Ax’'s Theorem - |

Lemma
If Ax’s theorem is true for algebraically closed fields of positive
characteristic, it's true for C.

Enough to show ACFU{n#0:ne N} U{A,x:n k eN}is
consistent [completeness for ACFy]

Enough to show every finite subset is consistent [compactness]

The finite subset says (at most) the characteristic is at least p

Any large positive characteristic ACF models the finite subset [Ax for
ACF)]
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Proving Ax's Theorem - |l

Lemma

If Ax’s theorem is true for E, it's true for all algebraically closed fields of
characteristic p.
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Proving Ax's Theorem - |l

Lemma

If Ax’s theorem is true for E, it's true for all algebraically closed fields of
characteristic p.

Proof:
@ Say A, « fails on some F = ACF,

Richard Rast Model Theory and Polynomials May 7, 2015 8 /10



Proving Ax's Theorem - |l

Lemma

If Ax’s theorem is true for E, it's true for all algebraically closed fields of
characteristic p.

Proof:
@ Say A, « fails on some F = ACF,

o F and F, model the same sentences [completeness for ACF ]
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Proving Ax's Theorem - |l

Lemma

If Ax’s theorem is true for E, it's true for all algebraically closed fields of
characteristic p.

Proof:
@ Say A, « fails on some F = ACF,

o F and F, model the same sentences [completeness for ACF ]
@ So A, « fails on E, contradiction!
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Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.
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This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective

Lemma

Ax’s theorem holds for IET,.
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Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax’s theorem holds for IETJ.

Proof:

° ]FT, is the union of all the F,m.

Richard Rast Model Theory and Polynomials May 7, 2015 9 /10




Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax’s theorem holds for IET,.

Proof:

° I[Tp is the union of all the F,m.

@ Pick an injective polynomial f from IET," to IET,"
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Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax’s theorem holds for IET,.

Proof:

e I, is the union of all the Fym.
@ Pick an injective polynomial f from IET," to IET,"
@ Let b be from IFT,”
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Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective. J
Lemma

Ax’s theorem holds for F . J
Proof:

e I, is the union of all the Fym.
@ Pick an injective polynomial f from ]FT," to IET,"
@ Let b be from IF‘T,”

o Let m be large enough that Fpm contains b and the coefficients of f
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Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”

Fact
Every injective function from a finite set to itself is surjective. J
Lemma
Ax’s theorem holds for F,. J
e [F,, is the union of all the Fpm.
@ Pick an injective polynomial f from IET," to IET,"
@ Let b be from IF‘T,”
o Let m be large enough that Fpm contains b and the coefficients of f
°

f . Fpm — Fpm is injective, so surjective
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Proving Ax's Theorem - |lI

This turns out to be our “technical lemma:”
Fact

Every injective function from a finite set to itself is surjective. J

Lemma
Ax’s theorem holds for F,. J

[F,, is the union of all the Fpm.

Pick an injective polynomial f from IET," to IET,"

Let b be from F,"

Let m be large enough that Fpm contains b and the coefficients of f
f . Fpm — Fpm is injective, so surjective

There is an 3 € Fjm C F,” where f(3) = b
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Bringing It All Together

So Ax's theorem is true for C essentially because injective functions on
finite sets are surjective.
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Bringing It All Together

So Ax's theorem is true for C essentially because injective functions on
finite sets are surjective.

Exercise

Figure out why the proof doesn't also show the converse of Ax’'s theorem,
which is false.
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Bringing It All Together

So Ax's theorem is true for C essentially because injective functions on
finite sets are surjective.

Exercise

Figure out why the proof doesn't also show the converse of Ax’'s theorem,
which is false.

Exercise

Using the same proof, prove Ax's theorem for varieties over algebraically
closed fields.
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