

Model Theory and Polynomials

Richard Rast

May 7, 2015

Why Logic?

Is there any interesting theorem which is *not* a logic theorem, but which has a *nice* logic proof?

Why Logic?

Is there any interesting theorem which is *not* a logic theorem, but which has a *nice* logic proof?

Theorem (Ax)

Let $f : \mathbb{C}^n \rightarrow \mathbb{C}^n$ be a polynomial. If f is injective, then f is surjective.

(converse is false)

First Order Logic

First order sentences have a *language*, like $L = \{0, 1, +, \cdot\}$.
Sentences are things like:

$$\begin{aligned} \forall x \exists y \ (x = 0 \vee x \cdot y = 1) \\ \forall x \forall y \forall z \ ((x \cdot y) \cdot z = x \cdot (y \cdot z)) \end{aligned}$$

We quantify over elements of the structure, but *not* sets, functions, etc.

First Order Logic

First order sentences have a *language*, like $L = \{0, 1, +, \cdot\}$.
Sentences are things like:

$$\begin{aligned} \forall x \exists y \ (x = 0 \vee x \cdot y = 1) \\ \forall x \forall y \forall z \ ((x \cdot y) \cdot z = x \cdot (y \cdot z)) \end{aligned}$$

We quantify over elements of the structure, but *not* sets, functions, etc.

So we **can't** say “for all polynomials f , . . .”
What to do?

First Order Logic is Expressive

Example: every injective polynomial of degree 3 from F^2 to F^2 is surjective ($A_{2,3}$):

First Order Logic is Expressive

Example: every injective polynomial of degree 3 from F^2 to F^2 is surjective ($A_{2,3}$):

$$\begin{aligned} & \forall c_{1,00} \forall c_{1,10} \dots \forall c_{1,33} \forall c_{2,00} \forall c_{2,10} \dots \forall c_{2,33} \\ & \left(\forall x_1 \forall x_2 \forall y_1 \forall y_2 \left[x \neq y \rightarrow \bigvee_{i=1,2} (p(\bar{x}, \bar{c}_i) \neq p(\bar{y}, \bar{c}_i)) \right] \right) \\ & \rightarrow (\forall y_1 \forall y_2 \exists x_1 \exists x_2 [p(\bar{x}, \bar{c}_1) = y_1 \wedge p(\bar{x}, \bar{c}_2) = y_2]) \end{aligned}$$

Here $p(\bar{x}, \bar{c}_i)$ is an abbreviation for:

$$c_{i,00} + c_{i,10} \cdot x_1 + c_{i,20} \cdot x_1 \cdot x_1 + \dots + c_{i,33} \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_2$$

First Order Logic is Expressive

Example: every injective polynomial of degree 3 from F^2 to F^2 is surjective ($A_{2,3}$):

$$\begin{aligned} & \forall c_{1,00} \forall c_{1,10} \dots \forall c_{1,33} \forall c_{2,00} \forall c_{2,10} \dots \forall c_{2,33} \\ & \left(\forall x_1 \forall x_2 \forall y_1 \forall y_2 \left[x \neq y \rightarrow \bigvee_{i=1,2} (p(\bar{x}, \bar{c}_i) \neq p(\bar{y}, \bar{c}_i)) \right] \right) \\ & \rightarrow (\forall y_1 \forall y_2 \exists x_1 \exists x_2 [p(\bar{x}, \bar{c}_1) = y_1 \wedge p(\bar{x}, \bar{c}_2) = y_2]) \end{aligned}$$

Here $p(\bar{x}, \bar{c}_i)$ is an abbreviation for:

$$c_{i,00} + c_{i,10} \cdot x_1 + c_{i,20} \cdot x_1 \cdot x_1 + \dots + c_{i,33} \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_2$$

The point is that $A_{2,3}$ is first-order. We never actually use the precise sentences. But we can make $A_{n,k}$ for any n and k .

The Only Theorem You Need

Theorem (Gödel, Löwenheim, Skolem)

*Let Σ be a set of first-order sentences in some fixed language L .
If every finite subset of Σ has an infinite model,
then Σ has a model of every infinite cardinality.*

This is sometimes called the **compactness** theorem, combined with the upward and downward Löwenheim-Skolem theorems.

Fun with Compactness

Theorem

Let Σ be the axioms for “algebraically closed fields of characteristic p ” (p is prime or zero). Then Σ is *complete*:

for every sentence σ , either $\Sigma \models \sigma$ or $\Sigma \models \neg\sigma$.

Fun with Compactness

Theorem

Let Σ be the axioms for “algebraically closed fields of characteristic p ” (p is prime or zero). Then Σ is *complete*:

for every sentence σ , either $\Sigma \models \sigma$ or $\Sigma \models \neg\sigma$.

Proof:

- If not, both $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg\sigma\}$ have a model of size continuum [compactness]

Fun with Compactness

Theorem

Let Σ be the axioms for “algebraically closed fields of characteristic p ” (p is prime or zero). Then Σ is *complete*:

for every sentence σ , either $\Sigma \models \sigma$ or $\Sigma \models \neg\sigma$.

Proof:

- If not, both $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg\sigma\}$ have a model of size continuum [compactness]
- There is only one algebraically closed field of characteristic p of that size [transcendence bases exist]

Fun with Compactness

Theorem

Let Σ be the axioms for “algebraically closed fields of characteristic p ” (p is prime or zero). Then Σ is **complete**:

for every sentence σ , either $\Sigma \models \sigma$ or $\Sigma \models \neg\sigma$.

Proof:

- If not, both $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg\sigma\}$ have a model of size continuum [compactness]
- There is only one algebraically closed field of characteristic p of that size [transcendence bases exist]
- The models from point 1 must be isomorphic, **contradiction!**

Proving Ax's Theorem - I

Lemma

If Ax's theorem is true for algebraically closed fields of positive characteristic, it's true for \mathbb{C} .

Proving Ax's Theorem - I

Lemma

If Ax's theorem is true for algebraically closed fields of positive characteristic, it's true for \mathbb{C} .

Proof:

- Enough to show $\text{ACF} \cup \{n \neq 0 : n \in \mathbb{N}\} \cup \{A_{n,k} : n, k \in \mathbb{N}\}$ is consistent [completeness for ACF_0]

Proving Ax's Theorem - I

Lemma

If Ax's theorem is true for algebraically closed fields of positive characteristic, it's true for \mathbb{C} .

Proof:

- Enough to show $\text{ACF} \cup \{n \neq 0 : n \in \mathbb{N}\} \cup \{A_{n,k} : n, k \in \mathbb{N}\}$ is consistent [completeness for ACF_0]
- Enough to show every finite subset is consistent [compactness]

Proving Ax's Theorem - I

Lemma

If Ax's theorem is true for algebraically closed fields of positive characteristic, it's true for \mathbb{C} .

Proof:

- Enough to show $\text{ACF} \cup \{n \neq 0 : n \in \mathbb{N}\} \cup \{A_{n,k} : n, k \in \mathbb{N}\}$ is consistent [completeness for ACF_0]
- Enough to show every finite subset is consistent [compactness]
- The finite subset says (at most) the characteristic is at least p

Proving Ax's Theorem - I

Lemma

If Ax's theorem is true for algebraically closed fields of positive characteristic, it's true for \mathbb{C} .

Proof:

- Enough to show $\text{ACF} \cup \{n \neq 0 : n \in \mathbb{N}\} \cup \{A_{n,k} : n, k \in \mathbb{N}\}$ is consistent [completeness for ACF_0]
- Enough to show every finite subset is consistent [compactness]
- The finite subset says (at most) the characteristic is at least p
- Any large positive characteristic ACF models the finite subset [Ax for ACF_p]

Proving Ax's Theorem - II

Lemma

If Ax's theorem is true for $\overline{\mathbb{F}_p}$, it's true for all algebraically closed fields of characteristic p .

Proving Ax's Theorem - II

Lemma

If Ax's theorem is true for $\overline{\mathbb{F}_p}$, it's true for all algebraically closed fields of characteristic p .

Proof:

- Say $A_{n,k}$ fails on some $F \models \text{ACF}_p$

Proving Ax's Theorem - II

Lemma

If Ax's theorem is true for $\overline{\mathbb{F}_p}$, it's true for all algebraically closed fields of characteristic p .

Proof:

- Say $A_{n,k}$ fails on some $F \models \text{ACF}_p$
- F and $\overline{\mathbb{F}_p}$ model the same sentences [completeness for ACF_p]

Proving Ax's Theorem - II

Lemma

If Ax's theorem is true for $\overline{\mathbb{F}_p}$, it's true for all algebraically closed fields of characteristic p .

Proof:

- Say $A_{n,k}$ fails on some $F \models \text{ACF}_p$
- F and $\overline{\mathbb{F}_p}$ model the same sentences [completeness for ACF_p]
- So $A_{n,k}$ fails on $\overline{\mathbb{F}_p}$, contradiction!

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proof:

- $\overline{\mathbb{F}_p}$ is the union of all the \mathbb{F}_{p^m} .

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proof:

- $\overline{\mathbb{F}_p}$ is the union of all the \mathbb{F}_{p^m} .
- Pick an injective polynomial f from $\overline{\mathbb{F}_p}^n$ to $\overline{\mathbb{F}_p}^n$

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proof:

- $\overline{\mathbb{F}_p}$ is the union of all the \mathbb{F}_{p^m} .
- Pick an injective polynomial f from $\overline{\mathbb{F}_p}^n$ to $\overline{\mathbb{F}_p}^n$
- Let \bar{b} be from $\overline{\mathbb{F}_p}^n$

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proof:

- $\overline{\mathbb{F}_p}$ is the union of all the \mathbb{F}_{p^m} .
- Pick an injective polynomial f from $\overline{\mathbb{F}_p}^n$ to $\overline{\mathbb{F}_p}^n$
- Let \bar{b} be from $\overline{\mathbb{F}_p}^n$
- Let m be large enough that \mathbb{F}_{p^m} contains \bar{b} and the coefficients of f

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proof:

- $\overline{\mathbb{F}_p}$ is the union of all the \mathbb{F}_{p^m} .
- Pick an injective polynomial f from $\overline{\mathbb{F}_p}^n$ to $\overline{\mathbb{F}_p}^n$
- Let \bar{b} be from $\overline{\mathbb{F}_p}^n$
- Let m be large enough that \mathbb{F}_{p^m} contains \bar{b} and the coefficients of f
- $f : \mathbb{F}_{p^m}^n \rightarrow \mathbb{F}_{p^m}^n$ is injective, so surjective

Proving Ax's Theorem - III

This turns out to be our “technical lemma:”

Fact

Every injective function from a finite set to itself is surjective.

Lemma

Ax's theorem holds for $\overline{\mathbb{F}_p}$.

Proof:

- $\overline{\mathbb{F}_p}$ is the union of all the \mathbb{F}_{p^m} .
- Pick an injective polynomial f from $\overline{\mathbb{F}_p}^n$ to $\overline{\mathbb{F}_p}^n$
- Let \bar{b} be from $\overline{\mathbb{F}_p}^n$
- Let m be large enough that \mathbb{F}_{p^m} contains \bar{b} and the coefficients of f
- $f : \mathbb{F}_{p^m}^n \rightarrow \mathbb{F}_{p^m}^n$ is injective, so surjective
- There is an $\bar{a} \in \mathbb{F}_{p^m}^n \subset \overline{\mathbb{F}_p}^n$ where $f(\bar{a}) = \bar{b}$

Bringing It All Together

So Ax's theorem is true for \mathbb{C} essentially because injective functions on finite sets are surjective.

Bringing It All Together

So Ax's theorem is true for \mathbb{C} essentially because injective functions on finite sets are surjective.

Exercise

*Figure out why the proof **doesn't** also show the converse of Ax's theorem, which is false.*

Bringing It All Together

So Ax's theorem is true for \mathbb{C} essentially because injective functions on finite sets are surjective.

Exercise

*Figure out why the proof **doesn't** also show the converse of Ax's theorem, which is false.*

Exercise

*Using the **same proof**, prove Ax's theorem for **varieties** over **algebraically closed fields**.*