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The Main ldea

The Goal: Understand the countable models of a theory ¢

Chosen framework: if ® <, W then the countable models of ® are “more
tame"” than the countable models of V.

Relatively easy: show & <, V;
Relatively hard: show ¢ £, W

Theorem (Ulrich, R., Laskowski)
If & <, W then ||o]| < [|]]. J
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Motivation?

Why study Borel reductions?

Comparing the number of models is pretty coarse. Consider:

@ Countable sequences of QQ-vector spaces
@ Graphs

These both have J; countable models, but
Borel reductions can easily show the former is than the latter.

Counterexamples to Vaught's conjecture are pretty weird,;
Borel reductions give a nice way to make this formal (even given CH).
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Borel Reductions

Fix O,V € Ly,
Mod,,(®) and Mod,, (V) are Polish spaces under the

f : Mod,(®) — Mod,, (V) is a Borel reduction if:
© Forall M,N = &, M = N iff f(M) = f(N)
@ For any ¢ € Ly, (with parameters from w)

there is a ¢ € L., (with parameters from w)
where f~1(Mod,,(W A ¢)) = Mod,,(® A ¢)

(preimages of Borel sets are Borel)

Say ¢ <, V.
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A Serious Question

It's somewhat clear how to show that ® <, V.
How is it possible to show that ® £, W?

. there are some techniques, but they only apply when ¢
and/or W is Borel! (and low in the hierarchy).

Very little is known when you can’t assume Borel.

'That is, the isomorphism relation is a Borel subset of the product space.
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Roadmap

© Model Theory and Games
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Back-and-Forth Equivalence

Let M and N be L-structures. F : M — N is a back-and-forth system if:

@ F is a nonempty set of partial functions M — N
@ All f € F preserve L-atoms and their negations
Q Forall fe F,allme M, and all n€ N,
there is a g € F where m € dom(g), n € im(g), and f C g

Say M =, N if there is such an F.

If M= N then M =, N.
If M and N are countable and M =, N, then M = N.
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Canonical Scott Sentences

Canonical Scott sentences form a of each =,,-class.

For all M, N, the following are equivalent:
O M=, N

@ css(M) = css(N)

@ N = css(M) (and/or M |= css(N))

The following relations are

@ ¢ is in the syntactic form of a canonical Scott sentence
® ¢ = css(M)

Ulrich, Rast, Laskowski (UMD) Potential Cardinality April 9, 2016 8 /17



Consistency

Proofs in Lyo:

Predictable axiom set
b0 =P
{oiiel} N ¢i
¢i = Vies ¢i

Proofs are now which are well-founded but possibly infinite.

@ € Loow is consistent if it does not prove —¢.

: folklore
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Consistency, |l

If ¢ € L, is formally consistent, then it has a model.

This is not true for larger sentences:

@ Let 1) = css(w1, <), so ¥ has no countable models.
o Let L={<}U{ch:new}.
o Letp =9 AN (VxV,x=cn)

Then ¢ is formally consistent, but ¢ has no models.

: the property “¢ is consistent” is absolute.
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Potential Cardinality

Let ® € L,,,. 0 € Ly, is a potential canonical Scott sentence of @ if:

@ o has the syntactic form of a CSS
@ o is formally consistent

© o formally proves ®

Let CSS(®) be the set of all these sentences. Let ||| = [CSS(P)].

(P, R0) < hoos(®) <[]

Note: loow(®P) is the number of models of ® up to =,
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The Connection

If f:® <, W, then f induces an injection from the countable Scott
sentences of ® to the countable Scott sentences of V.

Theorem (Ulrich, R., Laskowski)
If f:® <, W, then get an injection f : CSS(®) — CSS(V). J

Fix 7 € CSS(®).

f(7) is what f would take 7 to, in some V[G] making T countable.
Schoenfield: “IM € Mod,(®) (M =7 A f(M) |=0)" is absolute
If G1 and G, are independent, then V[G1|NV[Gy] = V...

...s0 f(7) € V and f(7) € CSS(V¥).
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Some Easy Facts

Fact: If ® is Borel, then ||®| < 3,,

e Hjorth, Kechris, Louveau: If ® is M2, then & is reducible to =,.

~

o [l Za | = Iorsarr, s0 [ < Itran,

Fact: If ® is Borel complete, then [|®|| = oo

o (Folklore): all ordinals are back-and-forth inequivalent, so |[LO|| = oco.
o LO <, @, so ||9]| = 0.
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Some Excellent Questions

Hanf Number: Is it possible to get J,, < ||| < co?

Is it possible for ||| = oo when @ is not Borel complete?

if there are first-order examples

Is it possible for ||®|| < 3,, when ® is not Borel?
And there are first-order examples!

The last “yes!” answers a stubborn conjecture:
Can a first-order theory be neither Borel nor Borel complete?
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A First Order Example

Let REF have language L = {E, : n € w}.

e Each E, is an equivalence relation on the universe with 2" classes.

@ Each Ej-class splits into exactly two E,11 classes.

REF is complete with quantifier elimination.
REF is superstable but not Ng-stable.
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REF Is Not Complicated

Despite not being Borel, REF is really nice:

o I (REF) =;:
. for all M, there is N C M where M =, N and |N| < J;.

e REF is grounded — for all & € CSS(REF), there is M = ® in V.

Let V[G] collapse |®| to Ng, let N |= & be its countable model.
» Compute a bunch of invariants Z(N) in V[G].

» Z(N) € V, even though N is not.

» Construct M = & from Z(N).

v

. |REF|| = 3z, so 3%, REF, so REF is not Borel complete.
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REF is Not Borel

REF has countable models of arbitrarily high Scott ranks.

Proof Sketch:
e Fix A, B = REF countable where A=, B and A % B.
@ Construct models My and My where My 22 M, and My =441 Ms.
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