

Potential Cardinality for Countable First-Order Theories

Douglas Ulrich, Richard Rast, Chris Laskowski

University of Maryland

AMS Western Sectional Meeting
on Descriptive Set Theory and its Applications
April 9, 2016

The Main Idea

The Goal: Understand the countable models of a theory Φ

Chosen framework: if $\Phi \leq_B \Psi$ then the countable models of Φ are “more tame” than the countable models of Ψ .

Relatively **easy**: show $\Phi \leq_B \Psi$;

Relatively **hard**: show $\Phi \not\leq_B \Psi$

Theorem (Ulrich, R., Laskowski)

If $\Phi \leq_B \Psi$ then $\|\Phi\| \leq \|\Psi\|$.

Motivation?

Why study Borel reductions?

Comparing the number of models is pretty coarse. Consider:

- ① Countable sequences of \mathbb{Q} -vector spaces
- ② Graphs

These both have \beth_1 countable models, but
Borel reductions can easily show the former is **much smaller** than the latter.

Counterexamples to Vaught's conjecture are **pretty weird**;
Borel reductions give a nice way to make this formal (even given CH).

Borel Reductions

Fix $\Phi, \Psi \in L_{\omega_1\omega}$.

$\text{Mod}_\omega(\Phi)$ and $\text{Mod}_\omega(\Psi)$ are Polish spaces under the **formula topology**.

$f : \text{Mod}_\omega(\Phi) \rightarrow \text{Mod}_\omega(\Psi)$ is a **Borel reduction** if:

- ① For all $M, N \models \Phi$, $M \cong N$ iff $f(M) \cong f(N)$
- ② For any $\psi \in L_{\omega_1\omega}$ (with parameters from ω)
there is a $\phi \in L_{\omega_1\omega}$ (with parameters from ω)
where $f^{-1}(\text{Mod}_\omega(\Psi \wedge \psi)) = \text{Mod}_\omega(\Phi \wedge \phi)$

(preimages of Borel sets are Borel)

Say $\Phi \leq_B \Psi$.

A Serious Question

It's somewhat clear how to show that $\Phi \leq_B \Psi$.

How is it possible to show that $\Phi \not\leq_B \Psi$?

Partial answer: there are some techniques, but they only apply when Φ and/or Ψ is Borel¹ (and low in the hierarchy).

Very little is known when you can't assume Borel.

¹That is, the isomorphism relation is a Borel subset of the product space.

Roadmap

1 Borel Reductions

2 Model Theory and Games

3 Connections

Back-and-Forth Equivalence

Let M and N be L -structures. $\mathcal{F} : M \rightarrow N$ is a **back-and-forth system** if:

- ① \mathcal{F} is a nonempty set of partial functions $M \rightarrow N$
- ② All $f \in \mathcal{F}$ preserve L -atoms and their negations
- ③ For all $f \in \mathcal{F}$, all $m \in M$, and all $n \in N$,
there is a $g \in \mathcal{F}$ where $m \in \text{dom}(g)$, $n \in \text{im}(g)$, and $f \subset g$

Say $M \equiv_{\infty\omega} N$ if there is such an \mathcal{F} .

If $M \cong N$ then $M \equiv_{\infty\omega} N$.

If M and N are **countable** and $M \equiv_{\infty\omega} N$, then $M \cong N$.

Canonical Scott Sentences

Canonical Scott sentences form a **canonical invariant** of each $\equiv_{\infty\omega}$ -class.

For all M, N , the following are equivalent:

- ① $M \equiv_{\infty\omega} N$
- ② $\text{css}(M) = \text{css}(N)$
- ③ $N \models \text{css}(M)$ (and/or $M \models \text{css}(N)$)

The following relations are **definable and absolute**:

- ϕ is in the syntactic form of a canonical Scott sentence
- $\phi = \text{css}(M)$

Consistency

Proofs in $L_{\infty\omega}$:

- Predictable axiom set
- $\phi, \phi \rightarrow \psi \vdash \psi$
- $\{\phi_i : i \in I\} \vdash \bigwedge_{i \in I} \phi_i$
- $\phi_i \vdash \bigvee_{i \in I} \phi_i$

Proofs are now **trees** which are well-founded but possibly infinite.

$\phi \in L_{\infty\omega}$ is **consistent** if it does not prove $\neg\phi$.

Warning: folklore

Consistency, II

If $\phi \in L_{\omega_1\omega}$ is **formally consistent**, then it has a model.

This is not true for larger sentences:

- Let $\psi = \text{css}(\omega_1, <)$, so ψ has no countable models.
- Let $L = \{<\} \cup \{c_n : n \in \omega\}$.
- Let $\phi = \psi \wedge (\forall x \bigvee_n x = c_n)$

Then ϕ is **formally consistent**, but ϕ has **no models**.

Fact: the property “ ϕ is consistent” is absolute.

Potential Cardinality

Let $\Phi \in L_{\omega_1\omega}$. $\sigma \in L_{\infty\omega}$ is a **potential canonical Scott sentence** of Φ if:

- ① σ has the syntactic form of a CSS
- ② σ is formally consistent
- ③ σ formally proves Φ

Let $\text{CSS}(\Phi)$ be the set of all these sentences. Let $\|\Phi\| = |\text{CSS}(\Phi)|$.

Easy fact: $I(\Phi, \aleph_0) \leq I_{\infty\omega}(\Phi) \leq \|\Phi\|$.

Note: $I_{\infty\omega}(\Phi)$ is the number of models of Φ up to $\equiv_{\infty\omega}$

The Connection

If $f : \Phi \leq_B \Psi$, then f induces an injection from the countable Scott sentences of Φ to the countable Scott sentences of Ψ .

Theorem (Ulrich, R., Laskowski)

If $f : \Phi \leq_B \Psi$, then get an injection $\bar{f} : \text{CSS}(\Phi) \rightarrow \text{CSS}(\Psi)$.

Proof Idea:

- Fix $\tau \in \text{CSS}(\Phi)$.
- $\bar{f}(\tau)$ is what f *would* take τ to, in some $\mathbb{V}[G]$ making τ countable.
- **Schoenfield**: “ $\exists M \in \text{Mod}_\omega(\Phi) (M \models \tau \wedge f(M) \models \sigma)$ ” is absolute
- If G_1 and G_2 are independent, then $\mathbb{V}[G_1] \cap \mathbb{V}[G_2] = \mathbb{V}$...
- ... so $\bar{f}(\tau) \in \mathbb{V}$ and $\bar{f}(\tau) \in \text{CSS}(\Psi)$.

Some Easy Facts

Fact: If Φ is Borel, then $\|\Phi\| < \beth_{\omega_1}$

Proof Idea:

- Hjorth, Kechris, Louveau: If Φ is Π_α^0 , then Φ is reducible to \cong_α .
- $\|\cong_\alpha\| = \beth_{-1+\alpha+1}$, so $\|\Phi\| \leq \beth_{-1+\alpha+1}$.

Fact: If Φ is Borel complete, then $\|\Phi\| = \infty$

Proof Idea:

- (Folklore): all ordinals are back-and-forth inequivalent, so $\|\text{LO}\| = \infty$.
- $\text{LO} \leq_B \Phi$, so $\|\Phi\| = \infty$.

Some Excellent Questions

Hanf Number: Is it possible to get $\beth_{\omega_1} \leq \|\Phi\| < \infty$?
Unknown!

Is it possible for $\|\Phi\| = \infty$ when Φ is not Borel complete?
Yes!

Unknown if there are first-order examples

Is it possible for $\|\Phi\| < \beth_{\omega_1}$ when Φ is not Borel?
Yes! And there are first-order examples!

The last “yes!” answers a stubborn conjecture:
Can a first-order theory be neither Borel nor Borel complete?

A First Order Example

Let **REF** have language $L = \{E_n : n \in \omega\}$.

Axioms:

- Each E_n is an equivalence relation on the universe with 2^n classes.
- Each E_n -class splits into exactly two E_{n+1} classes.

REF is complete with quantifier elimination.

REF is superstable but not \aleph_0 -stable.

REF Is Not Complicated

Despite not being Borel, REF is really nice:

- $I_{\infty\omega}(\text{REF}) = \beth_2$:

Idea: for all M , there is $N \subseteq M$ where $M \equiv_{\infty\omega} N$ and $|N| \leq \beth_1$.

- REF is **grounded** – for all $\Phi \in \text{CSS}(\text{REF})$, there is $M \models \Phi$ in \mathbb{V} .

Idea:

- ▶ Let $\mathbb{V}[G]$ collapse $|\Phi|$ to \aleph_0 , let $N \models \Phi$ be its countable model.
- ▶ Compute a bunch of invariants $\mathcal{I}(N)$ in $\mathbb{V}[G]$.
- ▶ $\mathcal{I}(N) \in \mathbb{V}$, even though N is not.
- ▶ Construct $M \models \Phi$ from $\mathcal{I}(N)$.

So: $\|\text{REF}\| = \beth_2$, so $\cong_3 \not\leq_B \text{REF}$, so REF is not Borel complete.

REF is Not Borel

REF has countable models of arbitrarily high Scott ranks.

Proof Sketch:

- Fix $A, B \models \text{REF}$ countable where $A \equiv_\alpha B$ and $A \not\equiv B$.
- Construct models M_1 and M_2 where $M_1 \not\equiv M_2$ and $M_1 \equiv_{\alpha+1} M_2$.

