
Potential Cardinality, II
for Countable First-Order Theories

Douglas Ulrich, Richard Rast, Chris Laskowski

University of Maryland

Rutgers Model Theory Seminar
April 11, 2016

Ulrich, Rast, Laskowski (UMD) Potential Cardinality, II April 11, 2016 1 / 26



A Reminder

A potential Scott sentence of some theory Φ is some φ ∈ L∞ω where in
some V[G ], φ = css(M) for some M |= Φ.

CSS(Φ) is the class of all potential Scott sentences.

‖Φ‖ = |CSS(Φ)|, which is possibly ∞.

Theorem (Ulrich, Rast, Laskowski)
If Φ ≤B Ψ, then ‖Φ‖ ≤ ‖Ψ‖.
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Some Excellent Questions

Hanf Number: Is there a Φ where iω1 ≤ ‖Φ‖ <∞?
Unknown!

Is it possible for ‖Φ‖ =∞ when Φ is not Borel complete?
Yes!
Unknown if there are first-order examples

Is it possible for ‖Φ‖ < iω1 when Φ is not Borel?
Yes! And there are first-order examples!

The last “yes!” answers a stubborn conjecture:
Can a first-order theory be neither Borel nor Borel complete?
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Abelian p-groups, I

Theorem (Friedman, Stanley)
Let Φ be the sentence describing abelian p-groups, for some prime p.
Then Φ is not Borel and not Borel complete. Also, ‖Φ‖ =∞.

Sketch: Φ is not Borel (in fact ‖Φ‖ =∞)
Define Fα(A) as the Fp-dimension of pαA/pα+1A.
Define F∞(A) as the Z(p∞)-dimension of p∞A.
For both, use ∞ for all infinite dimensions.

[Mackey/Kaplansky] A ≡∞ω B iff Fα(A) = Fα(B) for all α ≤ ∞

If |A|+ ≤ α <∞, Fα(A) = 0, but. . .
. . . one can construct A where UA

α 6= 0 [Kurosh]

So ∞ = I∞ω(Φ) ≤ ‖Φ‖, so Φ is not Borel.

Note: this is slightly simpler, but very similar to the original FS argument
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Abelian p-groups, II

Theorem (Friedman, Stanley)
Let Φ be the sentence describing abelian p-groups, for some prime p.
Then Φ is not Borel and not Borel complete. Also, ‖Φ‖ =∞.

Sketch: ∼=2 6≤B Φ
Suppose f :∼=2≤B Φ.
Then we get a “sufficiently definable” injection f : [R]ℵ0 → [ω1]ℵ0 .
[Friedman] no such map exists:

I If G codes an ω-sequence of generic reals, then
I The values f (G)(α) are forced by ∅, so
I f isn’t injective in V[G ], so
I f isn’t injective in V

So it is possible for Φ to be neither Borel nor Borel complete.
What about for a first-order theory?
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Three First Order Examples

We worked with three complete first-order theories: REF, K, and TK.

REF is superstable, classifiable (depth 1), and not ℵ0-stable.
‖REF‖ = i2, so REF is not Borel complete, but REF is not Borel.

K is ℵ0-stable and classifiable (depth 2).
‖K‖ = i2, so K is not Borel complete, but K is not Borel.

TK is ℵ0-stable and classifiable (depth 2).
TK is Borel complete, so ‖TK‖ =∞, but I∞ω(TK) = i2.

REF is grounded; TK is not; groundedness of K is open.
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Roadmap

1 Introduction

2 REF

3 ℵ0-stable Examples
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Refining Equivalence Relations

REF is in the following language: L = {En : n ∈ ω}. REF states:
1 Each En is an equivalence relation, all classes infinite
2 En has exactly 2n classes
3 Each En class refines into exactly En+1 classes

REF is superstable but not ℵ0-stable (type counting).

In fact REF is super nice from a stability-theory perspective.
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Refining Equivalence Relations, Overview

REF is the first known example of a first-order theory which is neither
Borel nor Borel complete. We’re going to show the following:
Niceness properties:

Show ∼=2≤B REF and i2 ≤ I∞ω(REF)
Show REF is grounded (every Scott sentence has a model), so. . .
. . . ‖REF‖ = i2, so . . .
∼=3 6≤B REF, and REF is not Borel complete.

Non-niceness properties:
REF admits countable models of large Scott rank, so . . .
. . . REF is not Borel.
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REF has Many Countable Models

We can embed “countable sets of reals” into Modω(REF).

Proof sketch:

Pretend we have names from 2n for each En class
Then we have names from 2ω for each E∞ class
Any dense X ⊂ 2ω can be the set of E∞ class we actually realize

(say, realize them infinitely many times)

Coding trick: we can realize certain E∞ classes finitely many times,
so that we still get this naming

So ∼=2≤B REF and I∞ω(REF) ≥ i2
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Aside: Properties of Things that Should Exist

For some theory T , fix φ ∈ CSS(T ).

Idea: even if φ has no models in V, invariants of its “canonical model” can
be computed in V anyway.

Sketch:
Let V[G1] and V[G2] be independent and collapse |φ| to ℵ0.
Let Mi be the “unique” countable model of φ in V[Gi ].

Compute a set Ii which depends only on Mi/ ∼=

Let V[G ] contain V[G1] and V[G2].
In V[G ], M1 ∼= M2 so I1 = I2 =: I, and. . .
. . . I ∈ V[G1] ∩ V[G2] = V.
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REF is Grounded

Recall: φ is grounded if everything in CSS(φ) has a model.

Theorem: Let φ ∈ CSS(REF). Then φ has a model.
The Invariants of φ (or rather, M |= φ in V[G ]):

1 The tree of Scott sentences from naming specific En-classes in M,
2 The multiplicity at each node (1 or 2),

3 The set of branches through the tree which are actually realized, and
4 For each branch: the set of colors of elements yielding the branch

Tedious: φ = ψ iff they have the same invariants.
Concrete: Can construct a model of φ from its invariants.
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REF is not Borel Complete

Theorem: I∞ω(REF) = i2
Proof sketch:

We already know I∞ω(REF) ≥ i2

Let M |= REF be arbitrary.
Let N ⊂ M drop all but a countable subset of each E∞ class
|N| ≤ i1 and M ≡∞ω N.

There are at most i2 models of size i1, up to ≡∞ω
So I∞ω(REF) ≤ i2

Corollary: ‖REF‖ = i2
Corollary: REF is not Borel complete (in fact ∼=3 6≤B REF)
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So Far, So Normal

What we know so far:

REF is tame, from a stability-theory perspective

REF is grounded
‖REF‖ = I∞ω(REF), and both are a reasonable, small number

REF is not Borel complete

Everything right now makes REF look very well-behaved.
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Back-and-Forth Games, I

Let M and N be structures, a ∈ Mk , b ∈ Nk .
Define (M, a) ≡α (N, b) by induction:

(M, a) ≡0 (N, b) if for all atoms R, M |= R(a) iff N |= R(b)

(M, a) ≡λ (N, b) iff for all α < λ, (M, a) ≡α (N, b)

(M, a) ≡α+1 (N, b) iff
∀c ∈ M ∃d ∈ N (M, ac) ≡α (N, bd), and
∀d ∈ N ∃c ∈ M (M, ac) ≡α (N, bd)

Easy: If M and N are countable, M ∼= N iff M ≡ω1 N.
Fun Fact: M ≡ N iff M ≡ω N

Classical: ∼=Φ is Borel iff for some α < ω1, ≡α is ∼=Φ.
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Back-and-Forth Games, II

Let M and N be structures, a ∈ Mk , b ∈ Nk .
Define the α-game for (M, a) and (N, b) as follows:

On turn k, player I plays an ordinal αk and an element of M or N
Require α > α0 > α1 > · · · , so the game has finite length

Player II responds with an element of N or M (respectively)

At the end there is a tuple c from M and d from N
Player II wins if (M, ac) ≡0 (N, bd)

Induction: (M, a) ≡α (N, b) iff player II has a winning strategy.
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Bounded Branching Bubble Models

Theorem: REF is not Borel.
Sketch:

By induction on α, construct M,N |= REF where M 6∼= N, M ≡α N.
REF is complete and not ℵ0-categorical, so α = 0 works.

Given A ≡α B and A 6∼= B, and X ⊂ 2ω dense, construct MA,B
X

where the E∞-class of η ∈ 2ω is realized iff η ∈ X . Picture!

If Y ⊂ 2ω is dense, MA,B
X ≡α+1 MA,B

Y

If Y 6= X , MA,B
X 6∼= MA,B

Y

Note: limit case is similar, but slightly more complicated.
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Wrapup on REF

Thus REF is an example of the following:

A complete first order theory in a countable language, where
The isomorphism relation is not Borel, and
The isomorphism relation is not Borel complete

More importantly: potential cardinality gives a way to show the
nonexistence of a Borel reduction, even when the underlying isomorphism
relation is not Borel.

Side benefit: the proof was model-theoretic, rather than set-theoretic.

Note: after naming acl(∅), the theory is Borel – in fact exactly ∼=2.
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Roadmap

1 Introduction

2 REF

3 ℵ0-stable Examples
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The Omega-stable Examples

We focus on two ℵ0-stable theories K and TK.

Similarities:
Both are ℵ0-stable, classifiable, and have (eni)-depth 2.
Both have non-Borel isomorphism relations.
After naming constants for acl(∅), the theories are identical.

Differences:
‖K‖ = i2, while
TK is Borel complete.

Aut(acl(∅)) for K is (2ω,+), while
Aut(acl(∅)) for TK is very complex.
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Koerwien’s Example

The theory K is in the language L = {U,Cn,Vn,Sn, πn : n ∈ ω}. K states:

U and each of the Vn are infinite sorts; Cn is a sort of size two
πn : Vn : U × C0 × · · ·Cn is a surjection
Sn : Vn → Vn is a successor function
πn ◦ Sn = πn

All the complexity is in deciding the dimension (color) of π−1(u, c)
where u ∈ U and c ∈ C0 × · · · × Cn

K is ℵ0-stable, classifiable, and has (eni)-depth two.

Theorem (Koerwien): ∼=K is not Borel.
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Koerwien’s Example, II

Fact: ∼=2≤B K and I∞ω(K) ≥ i2.
Proof:

Today’s reals are ωω.
Given an infinite X ⊂ ωω, construct MX |= K.

Let UX = X .
For each u ∈ Ux and each n ∈ ω,. . .
Give π−1(u, c) dimension u(n) + 1 for all c ∈ C0 × · · · × Cn−1.

Easy to see MX ≡∞ω MY iff X = Y .
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Koerwien’s Example, III

Lemma: Let X be a recursively presented Polish space,
G be a compact abelian Polish group acting continuously on X ,
X = P≤ℵ0(X ), and E be the orbit equivalence relation of G on X .
Then ‖(X , E)‖ ≤ i2.

Sketch:
Sufficient to show all φ ∈ CSS(X , E) are in Li+

1 ,ω
.

To show that, sufficient to show |S∞n (φ)| ≤ i1 for all n.

Use compactness to represent E-classes as Scott sentences.
Use abelianness to control the branching from Sαn to S∞n .

Cor: ‖K‖ = i2, so ∼=3 6≤B K and K is not Borel complete.
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The Koerwien Tweak

The theory TK is in the language L = {U,Cn,Vn, Sn, πn, pn : n ∈ ω}. TK
states:

U and each of the Vn are infinite sorts; Cn is a sort of size 2n

πn : Vn → U × Cn is a surjection
pn : Cn+1 → Cn is a two-to-one surjection
Sn : Vn → Vn is a successor function
πn ◦ Sn = πn

TK is ℵ0-stable, classifiable, and has (eni)-depth two.

The only apparent difference between K and TK is Aut(acl(∅)); here it’s
nonabelian and complicated.

After naming acl(∅), K ∼B TK ∼B
∼=2.
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The Koerwien Tweak, II

Theorem: TK is Borel complete.
Sketch:

Enough to code graphs on ω into models of TK.
For each pair (i , j) from ω, get lots of corresponding nodes u where:

I If i = j , then u has “color” 1.
I If i 6= j but they’re connected, then u has “color” 2.
I If i 6= j and they’re not connected, then u has “color” 3.

Let {Di : i ∈ ω} be countable, disjoint, dense subsets of 2ω.
The nodes are indexed by pairs (η, τ) from D =

⋃
i Di .

uη,τ corresponds to (i , j) iff η ∈ Di and τ ∈ Dj .
The nodes finite dimension on σ ∈ 2n iff σ ⊂ η ∩ τ .

Claim: ∀σ ∈ S∞, ∃g ∈ Aut(acl(∅)) where g(Di ) = Dσ(i) as sets.
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Dividing Lines?

Question: Does the Borel complexity of T correspond to anything
model-theoretic about T ?

There are some positive results around:
In o-minimal theories, either T is Borel complete or T ≤B

∼=2,
depending on nonsimple types
In ℵ0-stable theories, eni-depth gives a lower bound for complexity:
If e(T ) ≥ 2 + α, then ∼=α≤B T

But a lot of poorly understood behavior:
Boring automorphism groups can deny complexity (K versus TK). . .
But difficult groups are not enough to guarantee it (REF versus TK)

So if there are dividing lines, it’s not clear where they are, or what they
divide.
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