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A Reminder

A potential Scott sentence of some theory ® is some ¢ € L., where in
some V|G|, ¢ = css(M) for some M = &.

CSS(®) is the class of all potential Scott sentences.

||®|| = |CSS(®)|, which is possibly co.

Theorem (Ulrich, Rast, Laskowski)
If & <, W, then ||| < ||V J
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Some Excellent Questions

Hanf Number: Is there a ® where J,, < ||| < c0?

Is it possible for ||| = oo when @ is not Borel complete?

if there are first-order examples

Is it possible for ||®|| < 3,, when ® is not Borel?
And there are first-order examples!

The last “yes!” answers a stubborn conjecture:
Can a first-order theory be neither Borel nor Borel complete?
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Abelian p-groups, |

Theorem (Friedman, Stanley)

Let ® be the sentence describing abelian p-groups, for some prime p.
Then ® is not Borel and not Borel complete. Also, ||®| = cc.

: @ is not Borel (in fact ||®]| = o0)
Define F%(A) as the F,-dimension of p*A/p®TLA.
Define F>°(A) as the Z(p>)-dimension of p™A.
For both, use oo for all infinite dimensions.

[Mackey/Kaplansky] A =, B iff F*(A) = F*(B) for all a < o0

If JA[* < a < oo, F®(A) =0, but. ..
@ ...one can construct A where U2 # 0 [Kurosh]

@ S0 00 = Iy (P) < ||®]|, so D is not Borel.

. this is slightly simpler, but very similar to the original FS argument
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Abelian p-groups, I

Theorem (Friedman, Stanley)

Let ¢ be the sentence describing abelian p-groups, for some prime p.
Then ® is not Borel and not Borel complete. Also, ||®| = cc.

: gzﬁB )
@ Suppose f (=<, .

@ Then we get a “sufficiently definable” injection £ : [R]R0 — [w;]™o.
o [Friedman] no such map exists:

If G codes an w-sequence of generic reals, then

The values (G)(c) are forced by 0, so

f isn't injective in V[G], so

f isn't injective in V S

v vy vYy

So it is possible for ® to be neither Borel nor Borel complete.
What about for a first-order theory?
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Three First Order Examples

We worked with three complete first-order theories: REF, K, and TK.

REF is superstable, classifiable (depth 1), and not Rg-stable.
|REF|| = 3,, so REF is not Borel complete, but REF is not Borel.

K is Np-stable and classifiable (depth 2).
|K|| = 32, so K is not Borel complete, but K is not Borel.

TK is No-stable and classifiable (depth 2).
TK is Borel complete, so || TK|| = oo, but Iy, (TK) = 5.

REF is ; TK is not; groundedness of K is open.
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Roadmap

© REF

Ulrich, Rast, Laskowski (U
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Refining Equivalence Relations

REF is in the following language: L = {E, : n € w}. REF states:

@ Each E, is an equivalence relation, all classes infinite
© E, has exactly 2" classes

© Each E, class refines into exactly E,11 classes

REF is superstable but not Ng-stable (type counting).

In fact REF is from a stability-theory perspective.
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Refining Equivalence Relations, Overview

REF is the first known example of a first-order theory which is neither

Borel nor Borel complete. We're going to show the following:
properties:

@ Show =<, REF and J; < /., (REF)

e Show REF is grounded (every Scott sentence has a model), so...
e ...|REF|| =3 s0 ...

o =3%. REF, and REF is not Borel complete.

Non-niceness properties:

o REF admits countable models of large Scott rank, so ...
o ... REF is not Borel.
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REF has Many Countable Models

We can embed “countable sets of reals” into Mod,,(REF).

° we have names from 2" for each E, class

Then we have names from 2% for each E., class

Any dense X C 2% can be the set of E, class we actually realize
(say, realize them infinitely many times)

Coding trick: we can realize certain E, classes finitely many times,
so that we still get this naming

So =<, REF and I»,(REF) > 3,
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Aside: Properties of Things that Should Exist

For some theory T, fix ¢ € CSS(T).

Idea: even if ¢ has no models in V, invariants of its “canonical model” can
be computed in V anyway.

Let V[G1] and V[Gg] be independent and collapse |¢| to Ro.
Let M; be the “unique” countable model of ¢ in V[G;].

e Compute a set Z; which depends only on M;/ =

Let V[G] contain V[G1] and V[G].
In V[G], My Z My so Iy =7, =: Z, and. ..
...T € V[Gl] QV[GQ] =V.
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REF is Grounded

Recall: ¢ is grounded if everything in CSS(¢) has a model.

Theorem: Let ¢ € CSS(REF). Then ¢ has a model.
of ¢ (or rather, M = ¢ in V[G]):

@ The tree of Scott sentences from naming specific E,-classes in M,
@ The multiplicity at each node (1 or 2),

© The set of branches through the tree which are actually realized, and

@ For each branch: the set of colors of elements yielding the branch

Tedious: ¢ = 1 iff they have the same invariants.
Concrete: Can construct a model of ¢ from its invariants.
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REF is not Borel Complete

Theorem: lyw(REF) = 3p

e We already know /., (REF) > 3

Let M = REF be arbitrary.
Let N C M drop all but a countable subset of each E,, class
IN| <31 and M =, N.

@ There are at most J, models of size J;, up to =,
e So I, (REF) <3,

Corollary: [|REF| =3,
Corollary: REF is not Borel complete (in fact =3¢, REF)
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So Far, So Normal

What we know so far:

e REF is , from a stability-theory perspective

e REF is
o |REF|| = lwow(REF), and both are a reasonable, small number

@ REF is not Borel complete

Everything right now makes REF look
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Back-and-Forth Games, |

Let M and N be structures, a € M%, b € Nk,
Define (M,a) =, (N, b) by induction:

e (M,3) = (N, b) if for all atoms R, M = R(3) iff N = R(b)
e (M,a) =, (N, b) iff for all « < A, (M,3) =, (N, b)

o (M,3) =as1 (N, D) iff
Vee M3de N (M,ac) =, (

N, bd), and
Vd € N 3c € M (M,3c) = (N, bd

)

Easy: If M and N are countable, M = N iff M =, N.
Fun Fact: M= Niff M=, N

Classical: =¢ is Borel iff for some o < w1y, =4 is Zo.
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Back-and-Forth Games, I

Let M and N be structures, @ € MX, b € NX.
Define the a-game for (M, 3) and (N, b) as follows:

@ On turn k, player | plays an ordinal a and an element of M or N

@ Require @ > ag > a1 > - -+, so the game has finite length
e Player Il responds with an element of N or M (respectively)

@ At the end there is a tuple € from M and d from N
e Player Il wins if (M, ac) = (N, bd)

Induction: (M, 3) =, (N, b) iff player Il has a winning strategy.
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Bounded Branching Bubble Models

Theorem: REF is not Borel.

@ By induction on «, construct M, N = REF where M % N, M =, N.

@ REF is complete and not Np-categorical, so a = 0 works.

@ Given A=, Band A% B, and X C 2“ dense, construct /\/I;;’B
where the Ey-class of n € 2% is realized iff n € X.

o If Y C 2% is dense, M _a+1 MAB
o If Y #X, MPP 2 MOP

. limit case is similar, but slightly more complicated.
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Wrapup on REF

Thus REF is an example of the following:

@ A complete first order theory in a countable language, where
@ The isomorphism relation is not Borel, and

@ The isomorphism relation is not Borel complete

More importantly: potential cardinality gives a way to show the
nonexistence of a Borel reduction, even when the underlying isomorphism
relation is not Borel.

. the proof was model-theoretic, rather than set-theoretic.

Note: after naming acl((), the theory is Borel — in fact exactly 5.
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Roadmap

© No-stable Examples
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The Omega-stable Examples

We focus on two Ng-stable theories K and TK.

@ Both are Ng-stable, classifiable, and have (eni)-depth 2.
@ Both have non-Borel isomorphism relations.

@ After naming constants for acl((), the theories are

Differences:
e ||K|| = 32, while

o TK is Borel complete.

e Aut(acl(()) for K is (2¢,+), while
e Aut(acl()) for TK is very complex.
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Koerwien's Example

The theory K is in the language L = {U, Cp, Vp, Sn, mn - n € w}. K states:

U and each of the V, are infinite sorts; C, is a sort of size two
7t Vy:UXx Gy x---C,is a surjection

S, : V, — V, is a successor function

m,0S,=m,

All the complexity is in deciding the dimension (color) of 7—1(u, <)
where u e Uandce Gy x--- x C,

K is Nog-stable, classifiable, and has (eni)-depth two.

Theorem (Koerwien): =k is not Borel.
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Koerwien's Example, Il

Fact: =<, K and /,(K) > J>.

@ Today's reals are w“.

e Given an infinite X C w*, construct Mx = K.

o Let Ux = X.

@ For each u € U, and each n € w,. ..

e Give 77 1(u,<) dimension u(n) + 1 for all € € Gy x
@ Easy to see Mx =, My iff X =Y.
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Koerwien's Example, Il

Lemma: Let X be a recursively presented Polish space,
G be a compact abelian Polish group acting continuously on X,

X = P<y,(X), and & be the orbit equivalence relation of G on X
Then [|(X,€)]] < Dp.

e Sufficient to show all ¢ € CSS(X, &) are in Lay .
@ To show that, sufficient to show |S3°(¢#)| < 3; for all n.

@ Use compactness to represent £-classes as Scott sentences.

@ Use abelianness to control the branching from S5 to S;°.

Cor: ||K|| = 32, so =3%, K and K is not Borel complete.
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The Koerwien Tweak

The theory TK is in the language L = {U, Cp,, Vi, Sp, mn, pn : n € w}. TK
states:

U and each of the V, are infinite sorts; C, is a sort of size 2"

mn: Vy — U x C, is a surjection

Pn : Chy1 — C, is a two-to-one surjection

Sn: Vi — V, is a successor function

m,08,=m,

TK is No-stable, classifiable, and has (eni)-depth two.

The only apparent difference between K and TK is Aut(acl(()); here it's
nonabelian and complicated.

VK~ TK ~y 2.
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The Koerwien Tweak, Il

Theorem: TK is Borel complete.

@ Enough to code graphs on w into models of TK.

For each pair (i,/) from w, get lots of corresponding nodes u where:

» If i =j, then u has “color” 1.
» If i # j but they're connected, then u has “color” 2.
» If i # j and they're not connected, then u has “color” 3.

Let {D; : i € w} be countable, disjoint, dense subsets of 2¢.
The nodes are indexed by pairs (n,7) from D = J; D;.
up, - corresponds to (i,j) iff n € Dj and 7 € D;.

The nodes finite dimension on o € 2" iff e C nNT.

Claim: Vo € S, 3g € Aut(acl(P)) where g(D;) = D,y as sets.
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Dividing Lines?

Question: Does the Borel complexity of T correspond to anything
model-theoretic about T7

There are some positive results around:

@ In o-minimal theories, either T is Borel complete or T <=5,
depending on nonsimple types

@ In Np-stable theories, eni-depth gives a bound for complexity:
If e(T) > 2+, then =2,<, T

—B

But a lot of poorly understood behavior:
@ Boring automorphism groups can deny complexity (K versus TK). ..

e But difficult groups are not enough to guarantee it (REF versus TK)
So if there are dividing lines, it's not clear where they are, or what they
divide.
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