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An Excellent Question

1. Which is bigger? (up to isomorphism)
@ The class of countable graphs

@ The class of countable Q-vector spaces

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 2/27



An Excellent Question

1. Which is bigger? (up to isomorphism)
@ = The class of countable graphs

@ The class of countable Q-vector spaces

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 2/27



An Excellent Question

1. Which is bigger? (up to isomorphism)
@ = The class of countable graphs

@ The class of countable Q-vector spaces

2. Which is bigger? (up to isomorphism)
@ The class of countable graphs

@ The class of countable sets of countable (Q-vector spaces

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 2/27



An Excellent Question

1. Which is bigger? (up to isomorphism)
@ = The class of countable graphs

@ The class of countable Q-vector spaces

2. Which is bigger? (up to isomorphism)
@ = The class of countable graphs

@ The class of countable sets of countable (Q-vector spaces

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 2/27



Borel Reductions

Let (X, E) and (Y, F) be equivalence relations on standard Borel spaces.
Definition
Say (X, E) <, (Y,F) if there is a function f : X — Y satisfying:

o f is Borel

e For all a,b € X, aEb iff faFfb

Think: (X, E) is at most as complicated as (Y, F)
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First Examples

If & € L., then Mod(®) is a Polish (standard Borel) space.
@ Let X be the space of countable Q-vector spaces.
@ Let Y be the space of countable sets of countable Q-vector spaces.

@ Let Z be the space of countable graphs.

(X,=) < (V%) < (£4,%)
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The Low End: Borel Relations

Fact: If (X,E) <, (Y,F)and Fisa subset of Y x Y, then E is also
Borel.

: All the following are Borel and equivalent to
(Mod(T), =) for some appropriate first-order T:

=,: Integers, up to equality
© =;: Real numbers, up to equality
@ =5: Countable sets of reals, up to equality

© =3: Countable sets of countable sets of reals, up to equality

Fact: =,<;=3 whenever a < f3.

Fact: = is Borel if and only if sr(¢) < wq
if and only if =,< =, for some a < w;
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The Upper Edge: Borel Completeness

Definition
Say ¢ is Borel complete if it is <;-maximal.
That is, for all ¥, ¥ <, ¢.

Theorem (Friedman, Stanley)

Lots of things are Borel complete. Things like linear orders, graphs, fields,
groups, trees, ....

Evidently if ¢ is Borel complete, = is not Borel.

Excellent question: Suppose ¢ € L. Must = be either Borel or Borel
complete? What if ¢ is first-order?
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The Easy Way and the Hard Way

It is relatively straightforward to show ¢ <, 1 — just write down a map.

It is not at all obvious how to show ¢ %, 1.
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The Easy Way and the Hard Way

It is relatively straightforward to show ¢ <, 1 — just write down a map.

It is not at all obvious how to show ¢ %, 1. Some attempts:

@ If =, is Borel and low in the hierarchy (e.g. essentially countable)
there are some technical tools from descriptive set theory.
@ If =, and =, are both Borel, there are some fairly coarse tools.

© We could just check how many countable models each sentence has.

These never seem to apply to first-order examples, for some reason.
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A Pertinent Example
Let (X, E) be as usual, and let (X“, E¥) be the jump:

Let X={x,:ncw}andy={y,:ncw}soXx,yec X
XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X¥, E¥).
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Let X={x,:ncw}andy={y,:ncw}soXx,yec X

XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X¥, E¥).
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A Pertinent Example
Let (X, E) be as usual, and let (X“, E¥) be the jump:

Let X={x,:ncw}andy={y,:ncw}soXx,yec X
XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E)is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X¥, E¥).

@ Suppose F : (XY, E¥) <, (X,E)
@ Use F to construct a Borel G : (X¥)¥Y — X“
which is a diagonalizer for (X“, E¥)

@ No such G exists, since E“ is Borel
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A Pertinent Example, Done Wrong

Let (X, E) be as usual, and let (X“, E¥) be the jump:

Let X={x,:ncw}andy={y,:ncw}soXx,yec X
XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E)is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X%, E¥).
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A Pertinent Example, Done Wrong

Let (X, E) be as usual, and let (X“, E¥) be the jump:

Let X={x,:ncw}andy={y,:ncw}soXx,yec X
XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E)is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X%, E¥).

Wrong Proof:
@ Drop the word “countable” from however we informally describe
everything.
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A Pertinent Example, Done Wrong

Let (X, E) be as usual, and let (X“, E¥) be the jump:

Let X={x,:ncw}andy={y,:ncw}soXx,yec X
XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E)is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X%, E¥).

@ Drop the word “countable” from however we informally describe
everything.

@ Now X/E has k > 2 classes; since E is Borel, k < 0.

@ The jump of (X, E) is essentially nonempty multisubsets of X/E, so
X“/E“ has at least 2" — 1 classes.
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A Pertinent Example, Done Wrong

Let (X, E) be as usual, and let (X“, E¥) be the jump:

Let X={x,:ncw}andy={y,:ncw}soXx,yec X
XE®y iff there is a 0 € Soc where x, = y, () for all n.

Theorem (Friedman, Stanley)

If (X, E)is as usual, E C X x X is Borel, and E has more than one class,
then (X, E) <, (X%, E¥).

@ Drop the word “countable” from however we informally describe
everything.

@ Now X/E has k > 2 classes; since E is Borel, k < 0.

@ The jump of (X, E) is essentially nonempty multisubsets of X/E, so
X“/E“ has at least 2" — 1 classes.

@ 2" —1 > K, so you can't reduce X“/E“ to X/E.
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Roadmap

© Potential Cardinality
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Potentiality

Let A be any set. Let V[G] collapse [trcl(A)|.

Then A is hereditarily countable , as well as in any V[G][H].
Phrased another way:

Every set is potentially hereditarily countable.
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Potentiality

Let A be any set. Let V[G] collapse [trcl(A)|.

Then A is hereditarily countable , as well as in any V[G][H].
Phrased another way:

Every set is potentially hereditarily countable.

Let « be any ordinal; then « is “potentially in wy."

But if A is not an ordinal, A is still not an ordinal in V[G], so A is not
potentially in w;.

Sets are potentially in wy iff they are ordinals.
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Making it Rigorous

Let ¢(x) be a (meta)-formula with parameters from HC. Say ¢ is a strong
definition if its truth (persistently) does not change under forcing.

Precisely:

For any V[G], any a € HCVICl and any V[G][H],
HCVIC = ¢(a) iff HCVICIH] = 4(a).
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Making it Rigorous

Let ¢(x) be a (meta)-formula with parameters from HC. Say ¢ is a strong
definition if its truth (persistently) does not change under forcing.

Precisely:

For any V[G], any a € HCVICl and any V[G][H],
HCVIC = ¢(a) iff HCVICIH] = 4(a).

Let a be any set. Say a potentially satisfies ¢ if, for some (any) forcing
extension V[G] in which a is hereditarily countable, HCVI®! = ¢(a).

The potential class ¢ is the set of all a which potentially satisfy ¢.
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It's Easier than It Sounds

Some examples:
(] Hcptl is V
(] (wl)ptl is ON
@ wpt] IS w
[*] Rptl is R
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It's Easier than It Sounds

Hcpt] is V
(wl)ptl is ON
Wptl IS w

Rptl is R

o If X is strongly definable, the potential class of “countable sets of
elements of X" is P(Xp1)

o If X and Y are strongly definable, (X)), is (Xpu) o
o If {X;: i€ I} are strongly definable, (U;c; Xi) = Uicy,,,(Xi)pui
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Potential Cardinality

Proposition

If f: X — Y is an injection (persistently, and everything is strongly
definable) then fi : Xy — Yy is also an injection.

If X is strongly definable, define the potential cardinality of X as [ X|.
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Potential Cardinality

Proposition

If f: X — Y is an injection (persistently, and everything is strongly
definable) then fi : Xy — Yy is also an injection.

If X is strongly definable, define the potential cardinality of X as [ X|.

Some examples:

° Rl =2

° [Py, (R)|| =

o fJwill = o0

o [P, (X)] = 21X

o XY = x|

o [[Uies Xill = 1]l + supie; [| Xi]
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Roadmap

© Model Theory, Revisited
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Scott Sentences, More Generally

We can define canonical Scott sentences for model M in the usual way.
Call this sentence css(M); note css(M) € L+
Theorem
Let M and N be L-structures. The following are equivalent:
Q css(M) = css(N)
Q@ N css(M)
© M and N are back-and-forth equivalent.

Q@ M and N are potentially isomorphic.
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Scott Sentences, Most Generally

A canonical Scott sentence extending ¢ is an Ly,-sentence ¢ satisfying all
the following:

@ 1) fits the syntactic form of a canonical Scott sentence.
@ 1) is not formally inconsistent.

@ 1) A —¢ is formally inconsistent.

: these conditions are equivalent to “in some (any) forcing extension
in which ¢ A € L., ¥ is the Scott sentence of a countable model of ¢."
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Scott Sentences, Most Generally

A canonical Scott sentence extending ¢ is an Ly,-sentence ¢ satisfying all
the following:

@ 1) fits the syntactic form of a canonical Scott sentence.
@ 1) is not formally inconsistent.

@ 1) A —¢ is formally inconsistent.

: these conditions are equivalent to “in some (any) forcing extension
in which ¢ A € L., ¥ is the Scott sentence of a countable model of ¢."

: CSS(¢)pt is the set of all canonical Scott sentences extending ¢.

Warning: canonical Scott sentences may not have models in V.
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The Actual Point of All This Machinery

Theorem

If £: Mod(P1) <, Mod(P2), then the map css(M) — css(f(M)) is a
persistent strongly definable injection.

So define ||®|| as |CSS(P)p-

Corollary
If |®|| > ||V]], then Mod(®) £, Mod(V). J
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A Simple Consequence

For any ¢, let I (¢) be the number of back-and-forth inequivalent
models of ¢.

Theorem
If isomorphism for ¢ is Borel, then looy,(¢) < T, - }
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A Simple Consequence

For any ¢, let I (¢) be the number of back-and-forth inequivalent
models of ¢.

Theorem
If isomorphism for ¢ is Borel, then looy,(¢) < T, - }

Easy proof:

@ Since ¢ is Borel, ¢ <,=, for some o < wy
@ By an easy induction on «, || Z, || = 3-14a+1
® loow(®) < [0l < [l =a || = F-14at1 <
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Roadmap

@ A Worked Example
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Axioms for an Example

Let L = {E,: n € w}. REF will be the L-theory with the following axioms:

@ Each E, is an equivalence class with 2" classes.
o Each E,; refines E,.

@ Each Ej-class splits into exactly two E,1-classes.

Proposition
REF is complete with quantifier elimination and a prime model. It is
small, superstable, and not w-stable.

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 21 /27



REF Is Not Borel

Fact: = is Borel if and only if, for some o < wi, =, implies isomorphism
for countable models of ¢.

Proposition
Isomorphism for REF is not Borel. J

Since REF is complete with more than one model, =g does not imply
isomorphism.

Suppose A, B = REF are countable, A=, B, and A% B.
Let X and Y be disjoint countable dense subsets of 2.

@ Construct Myx and My countable where Mx =,4+1 My but
My 2 My .
@ Similar construction at limit stages.
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Coding a Bit of Complexity

Prop: =<, REF

@ Pick a prime model of REF; label its elements by 2<%

@ Fix an enumeration f : 2<% — w; expand each element 7 to have
color f(n) +1

© Given X C 2% countable, for each 1 € X,
add new elements a,, with E,, class 1 and color co

@ Call the result My

@ If Mx = My, then the isomorphism preserves colors, so X = Y (and
conversely)

Corollary: Iy, (REF) > J,.
: Leave off the word “countable” in step 3.
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Counting Models

Prop: leew(REF) = Js.
Proof:

e Let M = REF be arbitrary.
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Counting Models

Prop: Iww(REF) = 3.
Proof:

e Let M = REF be arbitrary.

@ For each a, drop a cocountable subset of a/E
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Counting Models

Prop: Iww(REF) = 3.
Proof:

e Let M = REF be arbitrary.

@ For each a, drop a cocountable subset of a/E
o Call the result N; N =, M.
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Counting Models

Prop: lww(REF) = 3.

Let M = REF be arbitrary.

For each a, drop a cocountable subset of a/E
Call the result N; N =, M.

IN| < 31, 50 loow(REF) <21 =0,

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 24 /27



Counting Models

Prop: lww(REF) = 3.

Let M = REF be arbitrary.

For each a, drop a cocountable subset of a/E,
Call the result N; N =, M.

IN| < 31, 50 loow(REF) <21 =0,

Warning: lsw(®) <; ||¢]| but this is strict in general.
So this gives us no information about Borel reducibility on its own.
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Consistent Implies Satisfiable

Difficult Fact: If ¢ € CSS(REF )1, then ¢ has a model.
Proof Idea:

@ Give a concise list of invariants of a model, called data.
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Consistent Implies Satisfiable

Difficult Fact: If ¢ € CSS(REF )1, then ¢ has a model.
Proof Idea:

@ Give a concise list of invariants of a model, called data.
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Consistent Implies Satisfiable

Difficult Fact: If ¢ € CSS(REF )1, then ¢ has a model.

@ Give a concise list of invariants of a model, called data.
e Show that data(M) = data(N) iff M =4, N.

@ Show that if ¢ € CSS(REF )y, then data(¢) € V.

e Use data(¢) to construct an L-structure M in V.
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Consistent Implies Satisfiable

Difficult Fact: If ¢ € CSS(REF )1, then ¢ has a model.

@ Give a concise list of invariants of a model, called data.
Show that data(M) = data(N) iff M =4, N.

Show that if ¢ € CSS(REF)y, then data(¢) € V.

Use data(¢) to construct an L-structure M in V.

°
°
°
@ Show that M =, N, where N is in V[G] and N = ¢.
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Consistent Implies Satisfiable

Difficult Fact: If ¢ € CSS(REF )1, then ¢ has a model.

@ Give a concise list of invariants of a model, called data.
e Show that data(M) = data(N) iff M =4, N.

@ Show that if ¢ € CSS(REF )y, then data(¢) € V.

e Use data(¢) to construct an L-structure M in V.

@ Show that M =, N, where N is in V[G] and N = ¢.
e Conclude that M |= ¢.

Richard Rast (University of Maryland) Potential Cardinality December 1, 2015 25 /27



Consistent Implies Satisfiable

Difficult Fact: If ¢ € CSS(REF )1, then ¢ has a model.

@ Give a concise list of invariants of a model, called data.
e Show that data(M) = data(N) iff M =4, N.

@ Show that if ¢ € CSS(REF )y, then data(¢) € V.

e Use data(¢) to construct an L-structure M in V.

@ Show that M =, N, where N is in V[G] and N = ¢.
e Conclude that M |= ¢.

Thus |REF|| = /oo, (REF).
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REF Is Not Borel Complete

Theorem
~,¢. REF J

Proof: || 23 || = 33, while |REF|| = lww(REF) = 3, < Js.

Corollary

There is a first-order theory whose isomorphism relation is neither Borel
nor Borel complete.
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Extensions

Corollary: For every ordinal 2 < a < wjq, there is a complete first-order
theory T, where:

° gozSB Ta
@ Isomorphism for T, is not Borel

@ =,11%; Ta, and in particular T, is not Borel complete.

Open: Is the above possible for « =0 or a = 17

The case aw = 1 is known to be possible for L,,.-sentences (eg: abelian
p-groups), but is still open for first-order theories.

The case a = 0 is exactly Vaught's conjecture.
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