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An Excellent Question

1. Which is bigger? (up to isomorphism)
1 The class of countable graphs
2 The class of countable Q-vector spaces

2. Which is bigger? (up to isomorphism)
1 The class of countable graphs
2 The class of countable sets of countable Q-vector spaces
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Borel Reductions

Let (X ,E ) and (Y ,F ) be equivalence relations on standard Borel spaces.

Definition
Say (X ,E ) ≤B (Y ,F ) if there is a function f : X → Y satisfying:

f is Borel
For all a, b ∈ X , aEb iff faFfb

Think: (X ,E ) is at most as complicated as (Y ,F )
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First Examples

If Φ ∈ Lω1ω, then Mod(Φ) is a Polish (standard Borel) space.
Let X be the space of countable Q-vector spaces.
Let Y be the space of countable sets of countable Q-vector spaces.
Let Z be the space of countable graphs.

(X ,∼=) <B (Y ,∼=) <B (Z ,∼=)
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The Low End: Borel Relations

Fact: If (X ,E ) ≤B (Y ,F ) and F is a Borel subset of Y ×Y , then E is also
Borel.

Some examples: All the following are Borel and equivalent to
(Mod(T ),∼=) for some appropriate first-order T :

0 ∼=0: Integers, up to equality
1 ∼=1: Real numbers, up to equality
2 ∼=2: Countable sets of reals, up to equality
3 ∼=3: Countable sets of countable sets of reals, up to equality

...

Fact: ∼=α<B
∼=β whenever α < β.

Fact: ∼=φ is Borel if and only if sr(φ) < ω1
if and only if ∼=φ≤B

∼=α for some α < ω1
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The Upper Edge: Borel Completeness

Definition
Say φ is Borel complete if it is ≤B -maximal.
That is, for all ψ, ψ ≤B φ.

Theorem (Friedman, Stanley)
Lots of things are Borel complete. Things like linear orders, graphs, fields,
groups, trees, . . . .

Evidently if φ is Borel complete, ∼=φ is not Borel.

Excellent question: Suppose φ ∈ Lω1ω. Must ∼=φ be either Borel or Borel
complete? What if φ is first-order?
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The Easy Way and the Hard Way

It is relatively straightforward to show φ ≤B ψ – just write down a map.

It is not at all obvious how to show φ 6≤B ψ.

Some attempts:

1 If ∼=ψ is Borel and low in the hierarchy (e.g. essentially countable)
there are some technical tools from descriptive set theory.

2 If ∼=ψ and ∼=φ are both Borel, there are some fairly coarse tools.
3 We could just check how many countable models each sentence has.

These never seem to apply to first-order examples, for some reason.
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A Pertinent Example

Let (X ,E ) be as usual, and let (Xω,Eω) be the jump:

Let x = {xn : n ∈ ω} and y = {yn : n ∈ ω} so x , y ∈ Xω.
xEωy iff there is a σ ∈ S∞ where xn = yσ(n) for all n.

Theorem (Friedman, Stanley)
If (X ,E ) is as usual, E ⊂ X × X is Borel, and E has more than one class,
then (X ,E ) <B (Xω,Eω).

Hard Proof:

Suppose F : (Xω,Eω) ≤B (X ,E )
Use F to construct a Borel G : (Xω)ω → Xω

which is a diagonalizer for (Xω,Eω)
No such G exists, since Eω is Borel
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A Pertinent Example, Done Wrong
Let (X ,E ) be as usual, and let (Xω,Eω) be the jump:

Let x = {xn : n ∈ ω} and y = {yn : n ∈ ω} so x , y ∈ Xω.
xEωy iff there is a σ ∈ S∞ where xn = yσ(n) for all n.

Theorem (Friedman, Stanley)
If (X ,E ) is as usual, E ⊂ X × X is Borel, and E has more than one class,
then (X ,E ) <B (Xω,Eω).

Wrong Proof:

Drop the word “countable” from however we informally describe
everything.
Now X/E has κ ≥ 2 classes; since E is Borel, κ <∞.
The jump of (X ,E ) is essentially nonempty multisubsets of X/E , so
Xω/Eω has at least 2κ − 1 classes.
2κ − 1 > κ, so you can’t reduce Xω/Eω to X/E .
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Roadmap

1 Borel Reductions

2 Potential Cardinality

3 Model Theory, Revisited

4 A Worked Example
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Potentiality

Let A be any set. Let V[G ] collapse |trcl(A)|.
Then A is hereditarily countable in V[G ], as well as in any V[G ][H].
Phrased another way:

Every set is potentially hereditarily countable.

Let α be any ordinal; then α is “potentially in ω1.”
But if A is not an ordinal, A is still not an ordinal in V[G ], so A is not
potentially in ω1.

Sets are potentially in ω1 iff they are ordinals.
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Making it Rigorous

Let φ(x) be a (meta)-formula with parameters from HC. Say φ is a strong
definition if its truth (persistently) does not change under forcing.

Precisely:

For any V[G ], any a ∈ HCV[G] and any V[G ][H],
HCV[G] |= φ(a) iff HCV[G][H] |= φ(a).

Let a be any set. Say a potentially satisfies φ if, for some (any) forcing
extension V[G ] in which a is hereditarily countable, HCV[G] |= φ(a).

The potential class φptl is the set of all a which potentially satisfy φ.
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It’s Easier than It Sounds

Some examples:

HCptl is V
(ω1)ptl is ON
ωptl is ω
Rptl is R

Some more:
If X is strongly definable, the potential class of “countable sets of
elements of X” is P(Xptl)
If X and Y are strongly definable, (XY )ptl is (Xptl)Yptl

If {Xi : i ∈ I} are strongly definable, (
⋃

i∈I Xi ) =
⋃

i∈Iptl
(Xi )ptl
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Potential Cardinality

Proposition
If f : X → Y is an injection (persistently, and everything is strongly
definable) then fptl : Xptl → Yptl is also an injection.

If X is strongly definable, define the potential cardinality of X as |Xptl|.

Some examples:

‖R‖ = i1

‖Pℵ1(R)‖ = i2

‖ω1‖ =∞
‖Pℵ1(X )‖ = 2‖X‖

‖XY ‖ = ‖X‖‖Y ‖

‖
⋃

i∈I Xi‖ = ‖I‖+ supi∈I ‖Xi‖
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Roadmap

1 Borel Reductions

2 Potential Cardinality

3 Model Theory, Revisited

4 A Worked Example
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Scott Sentences, More Generally

We can define canonical Scott sentences for any model M in the usual way.
Call this sentence css(M); note css(M) ∈ L|M|+ω.

Theorem
Let M and N be L-structures. The following are equivalent:

1 css(M) = css(N)
2 N |= css(M)
3 M and N are back-and-forth equivalent.
4 M and N are potentially isomorphic.
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Scott Sentences, Most Generally

A canonical Scott sentence extending φ is an L∞ω-sentence ψ satisfying all
the following:

ψ fits the syntactic form of a canonical Scott sentence.
ψ is not formally inconsistent.
ψ ∧ ¬φ is formally inconsistent.

Fact: these conditions are equivalent to “in some (any) forcing extension
in which φ∧ψ ∈ Lω1ω, ψ is the Scott sentence of a countable model of φ.”

Fact: CSS(φ)ptl is the set of all canonical Scott sentences extending φ.

Warning: canonical Scott sentences may not have models in V.
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The Actual Point of All This Machinery

Theorem
If f : Mod(Φ1) ≤B Mod(Φ2), then the map css(M) 7→ css(f (M)) is a
persistent strongly definable injection.

So define ‖Φ‖ as |CSS(Φ)ptl|.

Corollary
If ‖Φ‖ > ‖Ψ‖, then Mod(Φ) 6≤B Mod(Ψ).
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A Simple Consequence

For any φ, let I∞ω(φ) be the number of back-and-forth inequivalent
models of φ.

Theorem
If isomorphism for φ is Borel, then I∞ω(φ) < iω1 .

Easy proof:

Since φ is Borel, φ ≤B
∼=α for some α < ω1

By an easy induction on α, ‖ ∼=α ‖ = i−1+α+1

I∞ω(φ) ≤ ‖φ‖ ≤ ‖ ∼=α ‖ = i−1+α+1 < iω1
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Axioms for an Example

Let L = {En : n ∈ ω}. REF will be the L-theory with the following axioms:

Each En is an equivalence class with 2n classes.
Each En+1 refines En.
Each En-class splits into exactly two En+1-classes.

Proposition
REF is complete with quantifier elimination and a prime model. It is
small, superstable, and not ω-stable.
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REF Is Not Borel

Fact: ∼=φ is Borel if and only if, for some α < ω1, ≡α implies isomorphism
for countable models of φ.

Proposition
Isomorphism for REF is not Borel.

Proof outline:
Since REF is complete with more than one model, ≡0 does not imply
isomorphism.
Suppose A,B |= REF are countable, A ≡α B, and A 6∼= B.
Let X and Y be disjoint countable dense subsets of 2ω.
Construct MX and MY countable where MX ≡α+1 MY but
MX 6∼= MY .
Similar construction at limit stages.
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Coding a Bit of Complexity

Prop: ∼=2≤B REF
Proof outline:

1 Pick a prime model of REF; label its elements by 2<ω
2 Fix an enumeration f : 2<ω → ω; expand each element η to have

color f (η) + 1
3 Given X ⊂ 2ω countable, for each η ∈ X ,

add new elements aη with E∞ class η and color ∞
4 Call the result MX
5 If MX ∼= MY , then the isomorphism preserves colors, so X = Y (and

conversely)

Corollary: I∞ω(REF) ≥ i2.
Proof: Leave off the word “countable” in step 3.
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Counting Models

Prop: I∞ω(REF) = i2.
Proof:

Let M |= REF be arbitrary.

For each a, drop a cocountable subset of a/E∞
Call the result N; N ≡∞ω M.
|N| ≤ i1, so I∞ω(REF) ≤ 2i1 = i2

Warning: I∞ω(φ) ≤B ‖φ‖ but this is strict in general.
So this gives us no information about Borel reducibility on its own.
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|N| ≤ i1, so I∞ω(REF) ≤ 2i1 = i2
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Consistent Implies Satisfiable

Difficult Fact: If φ ∈ CSS(REF)ptl, then φ has a model.
Proof Idea:

Give a concise list of invariants of a model, called data.

Show that data(M) = data(N) iff M ≡∞ω N.
Show that if φ ∈ CSS(REF)ptl, then data(φ) ∈ V.
Use data(φ) to construct an L-structure M in V.
Show that M ≡∞ω N, where N is in V[G ] and N |= φ.
Conclude that M |= φ.

Thus ‖REF‖ = I∞ω(REF).
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REF Is Not Borel Complete

Theorem
∼=3 6≤B REF

Proof: ‖ ∼=3 ‖ = i3, while ‖REF‖ = I∞ω(REF) = i2 < i3.

Corollary
There is a first-order theory whose isomorphism relation is neither Borel
nor Borel complete.
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Extensions

Corollary: For every ordinal 2 ≤ α < ω1, there is a complete first-order
theory Tα where:

∼=α≤B Tα
Isomorphism for Tα is not Borel
∼=α+1 6≤B Tα, and in particular Tα is not Borel complete.

Open: Is the above possible for α = 0 or α = 1?

The case α = 1 is known to be possible for Lω1ω-sentences (eg: abelian
p-groups), but is still open for first-order theories.

The case α = 0 is exactly Vaught’s conjecture.
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