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Model Theory

MODEL THEORY is concerned with the following objective:

Given a theory T ,

try to understand the models of T .
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Sentences

For us, a sentence is a meaningful, finite expression using the following
logical symbols:

∧,∨,→,¬,∀,∃, (, )

Along with variables and symbols from a formal language.
Some examples:

Lgp = {·,−1, e}
Lring = {+, ·,−, 0, 1}
Lord = {<}
Lorfld = {<,+, ·,−, 0, 1}

All languages are assumed to include =.
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Sentences, II

Examples:

∀x ∀y (x < y → ∃z(x < z ∧ z < y))

∀c0∀c1 · · · ∀cn(
∨n

i=0 ci 6= 0)→ ∃x(cnxn + · · ·+ c0 = 0)

Caveats:

(Compactness): Things like “there are only finitely many things where
...” are usually not expressible.

Quantifiers range across elements of a specified set (the universe).
We can’t quantify across functions or subsets or etc.

With some cleverness we can sometimes get around these limitations.
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Theories and Models

A theory is a collection of sentences in a specific language.
For instance, let RCF be the theory of real-closed fields in the
language {+, ·, 0, 1, <}.

Given a language L, an L-structure is a set with interpretations of the
symbols of L.

(R,+, ·, 0, 1, <) is an L-structure where L = {+, ·, 0, 1, <}

A model of a theory is an L-structure making all the sentences of the
theory true.

(R,+, ·, 0, 1, <) is a model of RCF.
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Countable Model Theory, I

Today we’re talking about countable models of a theory. Why?

This is a natural class to work on:
Easy to define and describe
The uncountable models are already well-understood (Shelah, et. al.)

This is a useful class to work on:
Existing results suggest a connection between the number of
countable models and model-theoretic properties:

I Ryll-Nardzewski: having a unique countable model is equivalent to “for
all n, Sn(T ) is finite”

I Marker: having some uncountable Sn(T ) implies the countable models
are “fairly complicated”

New results suggest dichotomies in some cases (e.g. ordered theories)
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Understanding the Countable Models

For us, understanding the countable models means determining how
difficult the isomorphism problem1 is.

Examples:
The problem for Q-vector spaces is easy: just take a basis of each
space, and see whether they’re the same size.

The problem for graphs (or groups, or fields. . . ) is apparently hard.

This question is inherently comparative.

1Determining if two countable models are isomorphic.
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The Complexity of Isomorphism

How do we measure the complexity of the isomorphism problem?

One classical idea was to count the number of countable models:
Q-vs has ℵ0 countable models.
RCF has 2ℵ0 (continuum) countable models
Groups has 2ℵ0 countable models

This has lots of problems:
There are only a few values that can possibly be the number:
{1, �A2, 3, 4, 5, 6, 7 . . . ,ℵ0,ℵ1, 2ℵ0}
Most interesting theories have 2ℵ0 countable models

This fails to distinguish between things that should be distinguishable.
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Borel Reductions

A better way is through Borel reductions.
Fix theories Φ and Ψ.

A Borel reduction from Φ to Ψ is a function which
1 takes countable models of Φ to models of Ψ, and
2 is injective on isomorphism classes, and
3 is “sufficiently mechanical.”

Intuition: if Φ Borel reduces to Ψ, then the countable models of Φ are
“less complicated” than the countable models of Ψ.

Condition (3) is needed to avoid trivialities.
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Borel Reductions, Formally

Fix theories Φ and Ψ.

Modω(Φ) and Modω(Ψ) are Polish spaces under the formula topology.

f : Modω(Φ)→ Modω(Ψ) is a Borel reduction if:
1 For all M,N |= Φ, M ∼= N iff f (M) ∼= f (N)

2 Preimages of Borel sets are Borel, in the formula topology.

Say Φ ≤B Ψ if such an f exists.

Plainly: (2) means that if some property holds in f (M), there is a logical
reason for it in M.
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A Real Example

Let Φ be “linear orders” and Ψ be “real closed fields.” Then Φ ≤B Ψ.

Proof outline:
Fix a linear order (I, <).

Pick a sequence (ai : i ∈ I) from a monster real closed field
where 1� ai for all i , and if i < j , then ai � aj .

Let MI be the real closure of {ai : i ∈ I}.

(I, <) ∼= (J , <) iff MI ∼= MJ .

f is “obviously Borel.”
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Establishing Some Benchmarks

Borel reducibility is inherently relative; it’s hard to gauge complexity of
(the countable models of) a sentence on its own.

We ameliorate this by establishing some benchmark sentences:
which are distinguishable from each other, and
whose countable models are easily understandable2, and
which are enough to distinguish the theories we care about.

Warnings:
The ≤B -structure of the class of all theories is impossibly complex, and
Proving Φ 6≤B Ψ is extremely difficult in general.

2Except in one very important case.
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Some Low Complexity Benchmarks

Some “low” isomorphism relations that come up a lot for us:

1: There is only one relation with a single class.

n: For any n ∈ N, there is only one relation with exactly n classes.

∼=0: Roughly, a “single natural number” captures each model.

∼=1: Roughly, a “single real number” captures each model.

∼=2: Roughly, a “countable set of reals” captures each model.

Not surprisingly:

1 <B 2 <B 3 <B · · · <B
∼=0 <B

∼=1 <B
∼=2 · · ·
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The High Complexity Benchmark

A theory Φ is Borel complete if it is ≤B -maximal among all theories.

That is: for all theories Ψ, Ψ ≤B Φ.

Theorem (Friedman, Stanley)
Lots of classes are Borel complete:

Graphs
Trees
Linear orders
Groups
Fields
. . .
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That’s Enough

Surprise: All the theories we investigate today will be exactly equivalent to
one of the following:

(1,=)
(n,=) for some 3 ≤ n < ω
∼=1 – real-valued invariants
∼=2 – set of real invariants

Borel complete – maximal complexity

Notably:

No ∼=0.
No need to perform delicate non-embeddability proofs.
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O-Minimal Theories

All theories will be first-order, complete, and have an infinite model.

A theory T is o-minimal if < orders the universe and every definable (with
parameters) set of elements is a finite union of points and open intervals.

Some examples:
(R,+, ·, 0, 1, <) is o-minimal (Tarski)

(R,+, ·, 0, 1, exp, <) is o-minimal (Wilkie)

(R,+, ·, sin, <) is not o-minimal:
Consider “Z = {x ∈ R : sin(πx) = 0}”
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Why O-Minimal Theories?

The definable subsets (even n-dimensional) of models of o-minimal
theories are nice:

Definable functions are piecewise continuous.
Definable sets admit cell decompositions.
Definable sets have Euler characteristics . . .
. . . which are preserved under definable injections.
(and lots more)

Some easy definable sets in (R,+, ·, 0, 1, <):
GLn(R) = {x ∈ Rn×n : det(x) 6= 0}
The complex field and conjugation function
Sn

Projective planes, lens spaces, etc. are interpretable
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The Divide

The fundamental notion for an o-minimal theory T is whether or not it is
locally simple.

Locally here means infinitesimally locally; within a 1-type:

A 1-type is a “complete” consistent intersection of convex definable sets.

Examples of 1-types in RCF:
The set of “positive infinitesimal” elements (a non-cut)
The set of “positive infinite” elements (a non-cut)
The set of “π-like” elements (a cut)

T is locally nonsimple if at least one of its types is nonsimple.
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Nonsimple Types

A 1-type is nonsimple if there is a non-degenerate definable function from
that type to itself.

Examples:
The set of “positive infinite” elements in RCF
is nonsimple under x 7→ x + 1.

The set of “positive infinitesimal” elements in RCF
is nonsimple under x 7→ 1

2 x .

The set of “π-like” elements in RCF
are nonsimple under (x , y) 7→ 1

2 (x + y). . .

. . . but there is no unary function taking this type to itself.
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No Nonsimple Types, I

Theorem
If T is o-minimal and has no nonsimple types, then T is 3a6b, ∼=1, or ∼=2,
where a is the number of independent non-cuts, and b is the number of
independent cuts.

Proof outline, continued:
If T has no nonsimple types, then countable models M |= T are
determined by local behavior: the order types of each 1-type.
When p is simple:

I 1 choice of order type for an atomic interval
I 3 choices of order type for a non-cut
I 6 choices of order type for a cut
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No Nonsimple Types, II

Theorem
If T is o-minimal and has no nonsimple types, then T is 3a6b, ∼=1, or ∼=2,
where a is the number of independent non-cuts, and b is the number of
independent cuts.

Proof outline:
If a and b are finite, T is 3a6b

If a or b is infinite but both are countable, T is ∼=1 (real invariants)
If a or b is uncountable, T is ∼=2 (countable sets of real invariants)
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The Divide, II

If T is o-minimal and locally simple, there are several values ∼=T can take,
but it’s essentially a type-counting argument.

If T is o-minimal and locally nonsimple, T turns out to be maximally
complicated (Borel complete).

To show this:
1 Find interesting linear orders in models of T , then
2 Use those to show LO ≤B T
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Archimedean Equivalence

Suppose p is a nonsimple type, and a and b realize p.

Say a ∼ b if there is some c in p(M), definable over a, where a ≤ b ≤ c
(or reversed if b ≤ a).

Examples:
In a real-closed field, two infinite elements a, b have a ∼ b if and only
if they polynomially bound each other
In a real additive group, two infinite elements a, b have a ∼ b if and
only if they linearly bound each other

Fact: ∼ is an equivalence relation with convex classes

If M |= T , call p(M)/∼ (with its order) the Archimedean ladder of p in M.
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Borel Completeness

Theorem
If T is o-minimal and admits a nonsimple type, then T is Borel complete.

Proof outline
Fix a 1-type p which is nonsimple.
Linear orders are Borel complete: show LO ≤B T .
For any countable (I, <). . .
. . . let MI be such that (p(MI)/∼, <) is isomorphic to (I, <).
This is a Borel reduction.

Warning: some details have been skipped for time
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Colored Linear Orders

A colored linear order (CLO) is a theory in a language
L = {<} ∪ {Pi : i ∈ I} where

I is a countable (possibly finite) set,
Each Pi (a color) is unary, and
< is a linear order: irreflexive, antisymmetric, transitive, and total

Terminology warning: we do not insist the Pi are disjoint or exhaustive

If T is a CLO and A |= T , sometimes refer to A as a CLO as well.
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The Theorem

Theorem
If T is a self-additive CLO, T is ℵ0-categorical or Borel complete.

Theorem
For any CLO T :

If T is locally simple, T is (n,=), ∼=1, or ∼=2.
If T is locally nonsimple, T is Borel complete.

Proof outline:
Divide T into convex self-additive pieces.
If one piece is nonsimple, T is Borel complete.
Each simple piece has a finite number of associated choices.
If all pieces are simple, the complexity of T is determined by the
number of choices.
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Self-Additive CLOs

A CLO T is self-additive if it has no nontrivial, convex, definable subsets.

Examples:
(Z, <), (Q, <) and (R, <) are self-additive:
They have no proper definable subsets.

(R,Q, <) – the reals with a color for “is rational” – is self-additive:
The only proper definable sets are Q and R \Q.

(N, <) is not self-additive:
[2, 7] is definable (actually every [m, n] is definable).

Fact: if T is self additive, (I, <) is an order, and {Ai : i ∈ I} all model T ,
then AI =

∑
i Ai is a model of T and Ai ≺ AI for all i .
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Archimedean Equivalence

Let T be self-additive.

If a and b are elements of A |= T ,say a ∼ b if for some formula φ(x , y):
φ(A, a) = {x ∈ A : A |= φ(x , a)} is convex and bounded
φ(A, a) contains both a and b

Theorem (Rubin)
If T is self-additive, then ∼ is an equivalence relation with convex classes.

Observation: ∼ is preserved under isomorphism, so the quotient order A/∼
is an invariant of the model.
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Self-Additive CLOs, Complexity I

Lemma
If T is self-additive and S1(T ) is infinite, T is Borel complete.

Proof outline:
Let p ∈ S1(T ) be nonisolated.
Find Mp |= T with one ∼-class realizing p.
For any (I, <), let MI =

∑
i∈I Mp.

The set Mp
I = {a ∈ MI : ∃b(b |= p and a ∼ b)} is invariant, and

Mp
I /∼ is order-isomorphic to I, so

I 7→ MI is a Borel reduction
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Self-Additive CLOs, Complexity II

Lemma
If T is a CLO with S1(T ) finite, T is ℵ0-categorical or Borel complete.

Proof by induction on complexity of T – roughly t = |S1(T )|
If t = 1, only (1, <), (Q, <) or (Z, <) are possible.
For t + 1, if T is not self-additive, T is a sum of simpler CLOs.
For t + 1, if T is self-additive, T is a shuffle of simpler CLOs.
If all components are ℵ0-categorical, so is T
If one component is Borel complete, so is T .

Corollary
All self-additive CLOs are ℵ0-categorical or Borel complete.
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Local Behavior

If T is a CLO, there is a space IT (T ) of convex types – complete,
consistent intersections of convex definable sets.

Think of IT (T ) as the infinitesimal decomposition of T .

Example: If T is self-additive, IT (T ) is a singleton.

Example: Let T = Th(ω,<) = {0, 1, 2, 3, 4, . . . .}.
IT (T ) has order type ω + 1.
The finite pieces n are singletons.
The final piece is the set of “infinite elements.”
This set is sometimes empty; it depends on the model.
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The Divide for CLOs

Let T be some CLO.

Important Facts:
Every sufficiently saturated model S has the same Th(Φ(S)). . .
. . . and this theory is self-additive . . .
. . . and hence either ℵ0-categorical or Borel complete.

Say T is locally nonsimple if some Th(Φ(S)) is Borel complete.
Say T is locally simple if every Th(Φ(S)) is ℵ0-categorical.

Easy: if T is locally nonsimple.
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General CLOs

Say T is locally simple. Then ∼=T can be characterized:
[Rosenstein]: Φ(S) has only finitely many convex subsets up to ≡.
For any A |= T , Φ(A) is equivalent to a convex subset of Φ(S).
A |= T is determined by Φ(A) for Φ ∈ IT (T ).

Let nΦ be the number of forms Φ(A) can take.
Fact: nΦ > 1 if and only if Φ is nonisolated.

If IT (T ) is all isolated, T has one countable model
If IT (T ) has finitely many nonisolated points, T has n > 1 models.
If IT (T ) has ℵ0 nonisolated points, T is ∼=1.
If IT (T ) has 2ℵ0 nonisolated points, T is ∼=2.

Observe: this is identical in spirit to the o-minimal case.
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Wrapup

The general idea is this (for T o-minimal or a CLO):

Divide T into convex, indivisible pieces
If T is locally nonsimple then T is Borel complete
If T is locally simple then the complexity of T is determined
essentially on the topology of the type space.

Questions:
Can the locally complicated / locally simple divide be defined for all
ordered theories?
Does “T is Borel complete or among 1, n, ∼=1, ∼=2” hold for all
ordered theories?
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