

The Borel Complexity of Isomorphism for some First Order Theories

Richard Rast

University of Maryland

Thesis Defense
March 29, 2016

Roadmap

- 1 The Very Basics
- 2 Borel Reductions
- 3 O-Minimal Theories
- 4 Colored Linear Orders

Model Theory

MODEL THEORY is concerned with the following objective:

Given a theory T ,

try to understand the models of T .

Sentences

For us, a **sentence** is a meaningful, finite expression using the following logical symbols:

$$\wedge, \vee, \rightarrow, \neg, \forall, \exists, (,)$$

Along with variables and symbols from a **formal language**.

Some examples:

- $L_{gp} = \{\cdot, ^{-1}, e\}$
- $L_{ring} = \{+, \cdot, -, 0, 1\}$
- $L_{ord} = \{<\}$
- $L_{orfld} = \{<, +, \cdot, -, 0, 1\}$

All languages are assumed to include $=$.

Sentences, II

Examples:

- $\forall x \forall y (x < y \rightarrow \exists z (x < z \wedge z < y))$
- $\forall c_0 \forall c_1 \dots \forall c_n (\bigvee_{i=0}^n c_i \neq 0) \rightarrow \exists x (c_n x^n + \dots + c_0 = 0)$

Caveats:

- (Compactness): Things like “there are only finitely many things where ...” are usually not expressible.
- Quantifiers range across elements of a specified set (the universe). We can’t quantify across functions or subsets or etc.

With some cleverness we can sometimes get around these limitations.

Theories and Models

A **theory** is a collection of sentences in a specific language.

- For instance, let RCF be the theory of real-closed fields in the language $\{+, \cdot, 0, 1, <\}$.

Given a language L , an **L -structure** is a set with interpretations of the symbols of L .

- $(\mathbb{R}, +, \cdot, 0, 1, <)$ is an L -structure where $L = \{+, \cdot, 0, 1, <\}$

A **model** of a theory is an L -structure making all the sentences of the theory true.

- $(\mathbb{R}, +, \cdot, 0, 1, <)$ is a model of RCF.

Countable Model Theory, I

Today we're talking about **countable models** of a theory. Why?

This is a **natural** class to work on:

- Easy to define and describe
- The uncountable models are already well-understood (Shelah, et. al.)

This is a **useful** class to work on:

- Existing results suggest a connection between the number of countable models and model-theoretic properties:
 - ▶ **Ryll-Nardzewski**: having a unique countable model is equivalent to “for all n , $S_n(T)$ is finite”
 - ▶ **Marker**: having some uncountable $S_n(T)$ implies the countable models are “fairly complicated”
- New results suggest dichotomies in some cases (e.g. ordered theories)

Roadmap

1 The Very Basics

2 Borel Reductions

3 O-Minimal Theories

4 Colored Linear Orders

Understanding the Countable Models

For us, understanding the countable models means determining how difficult the [isomorphism problem](#)¹ is.

Examples:

- The problem for \mathbb{Q} -vector spaces is [easy](#): just take a basis of each space, and see whether they're the same size.
- The problem for graphs (or groups, or fields...) is apparently [hard](#).

This question is inherently [comparative](#).

¹Determining if two countable models are isomorphic.

The Complexity of Isomorphism

How do we **measure** the complexity of the isomorphism problem?

One classical idea was to **count** the number of countable models:

- \mathbb{Q} -vs has \aleph_0 countable models.
- RCF has 2^{\aleph_0} (continuum) countable models
- Groups has 2^{\aleph_0} countable models

This has lots of **problems**:

- There are only a few values that can possibly be the number:
 $\{1, \aleph, 3, 4, 5, 6, 7, \dots, \aleph_0, \aleph_1, 2^{\aleph_0}\}$
- Most interesting theories have 2^{\aleph_0} countable models

This fails to distinguish between things that should be distinguishable.

Borel Reductions

A better way is through Borel reductions.

Fix theories Φ and Ψ .

A Borel reduction from Φ to Ψ is a function which

- ① takes countable models of Φ to models of Ψ , and
- ② is injective on isomorphism classes, and
- ③ is “sufficiently mechanical.”

Intuition: if Φ Borel reduces to Ψ , then the countable models of Φ are “less complicated” than the countable models of Ψ .

Condition (3) is needed to avoid trivialities.

Borel Reductions, Formally

Fix theories Φ and Ψ .

$\text{Mod}_\omega(\Phi)$ and $\text{Mod}_\omega(\Psi)$ are Polish spaces under the **formula topology**.

$f : \text{Mod}_\omega(\Phi) \rightarrow \text{Mod}_\omega(\Psi)$ is a **Borel reduction** if:

- ① For all $M, N \models \Phi$, $M \cong N$ iff $f(M) \cong f(N)$
- ② Preimages of Borel sets are Borel, in the formula topology.

Say $\Phi \leq_B \Psi$ if such an f exists.

Plainly: (2) means that if some property holds in $f(M)$, there is a logical reason for it in M .

A Real Example

Let Φ be “linear orders” and Ψ be “real closed fields.” Then $\Phi \leq_B \Psi$.

Proof outline:

- Fix a linear order $(I, <)$.
- Pick a sequence $(a_i : i \in I)$ from a monster real closed field where $1 \ll a_i$ for all i , and if $i < j$, then $a_i \ll a_j$.
- Let M_I be the real closure of $\{a_i : i \in I\}$.
- $(I, <) \cong (J, <)$ iff $M_I \cong M_J$.
- f is “obviously Borel.”

Establishing Some Benchmarks

Borel reducibility is inherently **relative**; it's hard to gauge complexity of (the countable models of) a sentence on its own.

We ameliorate this by establishing some **benchmark** sentences:

- which are distinguishable from each other, and
- whose countable models are easily understandable², and
- which are enough to distinguish the theories we care about.

Warnings:

- The \leq_B -structure of the class of all theories is impossibly complex, and
- Proving $\Phi \not\leq_B \Psi$ is extremely difficult in general.

²Except in one very important case.

Some Low Complexity Benchmarks

Some “low” isomorphism relations that come up a lot for us:

- 1 : There is only one relation with a single class.
- n : For any $n \in \mathbb{N}$, there is only one relation with exactly n classes.
- \cong_0 : Roughly, a “single natural number” captures each model.
- \cong_1 : Roughly, a “single real number” captures each model.
- \cong_2 : Roughly, a “countable set of reals” captures each model.

Not surprisingly:

$$1 <_B 2 <_B 3 <_B \cdots <_B \cong_0 <_B \cong_1 <_B \cong_2 \cdots$$

The High Complexity Benchmark

A theory Φ is **Borel complete** if it is \leq_B -maximal among all theories.

That is: for all theories Ψ , $\Psi \leq_B \Phi$.

Theorem (Friedman, Stanley)

Lots of classes are Borel complete:

- *Graphs*
- *Trees*
- *Linear orders*
- *Groups*
- *Fields*
- ...

That's Enough

Surprise: All the theories we investigate today will be exactly equivalent to one of the following:

- $(1, =)$
- $(n, =)$ for some $3 \leq n < \omega$
- \cong_1 – real-valued invariants
- \cong_2 – set of real invariants
- Borel complete – maximal complexity

Notably:

- No \cong_0 .
- No need to perform delicate non-embeddability proofs.

Roadmap

- 1 The Very Basics
- 2 Borel Reductions
- 3 O-Minimal Theories
- 4 Colored Linear Orders

O-Minimal Theories

All theories will be **first-order**, **complete**, and have an **infinite model**.

A theory T is **o-minimal** if $<$ orders the universe and every definable (with parameters) set of elements is a finite union of points and open intervals.

Some examples:

- $(\mathbb{R}, +, \cdot, 0, 1, <)$ is o-minimal (Tarski)
- $(\mathbb{R}, +, \cdot, 0, 1, \exp, <)$ is o-minimal (Wilkie)
- $(\mathbb{R}, +, \cdot, \sin, <)$ is **not** o-minimal:
Consider " $\mathbb{Z} = \{x \in \mathbb{R} : \sin(\pi x) = 0\}$ "

Why O-Minimal Theories?

The definable subsets (even n -dimensional) of models of o-minimal theories are nice:

- Definable functions are piecewise continuous.
- Definable sets admit **cell decompositions**.
- Definable sets have **Euler characteristics** ...
- ... which are preserved under definable injections.
- (and lots more)

Some **easy definable** sets in $(\mathbb{R}, +, \cdot, 0, 1, <)$:

- $\mathrm{GL}_n(\mathbb{R}) = \{\bar{x} \in \mathbb{R}^{n \times n} : \det(\bar{x}) \neq 0\}$
- The complex field and conjugation function
- S^n
- Projective planes, lens spaces, etc. are *interpretable*

The Divide

The fundamental notion for an o-minimal theory T is whether or not it is **locally simple**.

Locally here means **infinitesimally** locally; within a **1-type**:

A **1-type** is a “complete” consistent intersection of convex definable sets.

Examples of 1-types in RCF:

- The set of “positive infinitesimal” elements (a non-cut)
- The set of “positive infinite” elements (a non-cut)
- The set of “ π -like” elements (a cut)

T is locally nonsimple if *at least one* of its types is nonsimple.

Nonsimple Types

A 1-type is **nonsimple** if there is a non-degenerate definable function from that type to itself.

Examples:

- The set of “positive infinite” elements in RCF is nonsimple under $x \mapsto x + 1$.
- The set of “positive infinitesimal” elements in RCF is nonsimple under $x \mapsto \frac{1}{2}x$.
- The set of “ π -like” elements in RCF are nonsimple under $(x, y) \mapsto \frac{1}{2}(x + y)\dots$
... but there is **no** unary function taking this type to itself.

No Nonsimple Types, I

Theorem

If T is o-minimal and has no nonsimple types, then T is $3^a 6^b$, \cong_1 , or \cong_2 , where a is the number of independent non-cuts, and b is the number of independent cuts.

Proof outline, continued:

- If T has no nonsimple types, then countable models $M \models T$ are determined by **local behavior**: the order types of each 1-type.
- When p is simple:
 - ▶ 1 choice of order type for an atomic interval
 - ▶ 3 choices of order type for a non-cut
 - ▶ 6 choices of order type for a cut

No Nonsimple Types, II

Theorem

If T is o-minimal and has no nonsimple types, then T is $3^a 6^b$, \cong_1 , or \cong_2 , where a is the number of independent non-cuts, and b is the number of independent cuts.

Proof outline:

- If a and b are finite, T is $3^a 6^b$
- If a or b is infinite but both are countable, T is \cong_1 (real invariants)
- If a or b is uncountable, T is \cong_2 (countable sets of real invariants)

The Divide, II

If T is o-minimal and **locally simple**, there are several values \cong_T can take, but it's essentially a **type-counting** argument.

If T is o-minimal and **locally nonsimple**, T turns out to be maximally complicated (Borel complete).

To show this:

- ① Find interesting linear orders in models of T , then
- ② Use those to show $\text{LO} \leq_B T$

Archimedean Equivalence

Suppose p is a **nonsimple type**, and a and b realize p .

Say $a \sim b$ if there is some c in $p(M)$, definable over a , where $a \leq b \leq c$ (or reversed if $b \leq a$).

Examples:

- In a real-closed field, two infinite elements a, b have $a \sim b$ if and only if they polynomially bound each other
- In a real additive group, two infinite elements a, b have $a \sim b$ if and only if they linearly bound each other

Fact: \sim is an equivalence relation with convex classes

If $M \models T$, call $p(M)/\sim$ (with its order) the **Archimedean ladder** of p in M .

Borel Completeness

Theorem

If T is o-minimal and admits a nonsimple type, then T is Borel complete.

Proof outline

- Fix a 1-type p which is nonsimple.
- Linear orders are Borel complete: show $\text{LO} \leq_B T$.
- For any countable $(I, <)$...
- ... let M_I be such that $(p(M_I)/\sim, <)$ is isomorphic to $(I, <)$.
- This is a Borel reduction.

Warning: some details have been skipped for time

Roadmap

- 1 The Very Basics
- 2 Borel Reductions
- 3 O-Minimal Theories
- 4 Colored Linear Orders

Colored Linear Orders

A **colored linear order** (CLO) is a theory in a language
 $L = \{\langle\} \cup \{P_i : i \in I\}$ where

- I is a countable (possibly finite) set,
- Each P_i (a **color**) is unary, and
- \langle is a linear order: irreflexive, antisymmetric, transitive, and total

Terminology warning: we do not insist the P_i are disjoint or exhaustive

If T is a CLO and $A \models T$, sometimes refer to A as a CLO as well.

The Theorem

Theorem

If T is a *self-additive* CLO, T is \aleph_0 -categorical or Borel complete.

Theorem

For any CLO T :

- If T is locally simple, T is $(n, =)$, \cong_1 , or \cong_2 .
- If T is locally nonsimple, T is Borel complete.

Proof outline:

- Divide T into convex self-additive pieces.
- If one piece is nonsimple, T is Borel complete.
- Each simple piece has a finite number of associated choices.
- If all pieces are simple, the complexity of T is determined by the number of choices.

Self-Additive CLOs

A CLO T is **self-additive** if it has no nontrivial, convex, definable subsets.

Examples:

- $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ **are** self-additive:
They have no proper definable subsets.
- $(\mathbb{R}, \mathbb{Q}, <)$ – the reals with a color for “is rational” – **is** self-additive:
The only proper definable sets are \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$.
- $(\mathbb{N}, <)$ is **not** self-additive:
[2, 7] is definable (actually every $[m, n]$ is definable).

Fact: if T is self additive, $(I, <)$ is an order, and $\{A_i : i \in I\}$ all model T ,
then $A_I = \sum_i A_i$ is a model of T and $A_i \prec A_I$ for all i .

Archimedean Equivalence

Let T be self-additive.

If a and b are elements of $A \models T$, say $a \sim b$ if for some formula $\phi(x, y)$:

- $\phi(A, a) = \{x \in A : A \models \phi(x, a)\}$ is convex and bounded
- $\phi(A, a)$ contains both a and b

Theorem (Rubin)

If T is self-additive, then \sim is an equivalence relation with convex classes.

Observation: \sim is preserved under isomorphism, so the quotient order A/\sim is an invariant of the model.

Self-Additive CLOs, Complexity I

Lemma

If T is self-additive and $S_1(T)$ is infinite, T is Borel complete.

Proof outline:

- Let $p \in S_1(T)$ be nonisolated.
- Find $M_p \models T$ with one \sim -class realizing p .
- For any $(I, <)$, let $M_I = \sum_{i \in I} M_p$.
- The set $M_I^p = \{a \in M_I : \exists b (b \models p \text{ and } a \sim b)\}$ is invariant, and
- M_I^p / \sim is order-isomorphic to I , so
- $I \mapsto M_I$ is a Borel reduction

Self-Additive CLOs, Complexity II

Lemma

If T is a CLO with $S_1(T)$ finite, T is \aleph_0 -categorical or Borel complete.

Proof by induction on complexity of T – roughly $t = |S_1(T)|$

- If $t = 1$, only $(1, <)$, $(\mathbb{Q}, <)$ or $(\mathbb{Z}, <)$ are possible.
- For $t + 1$, if T is not self-additive, T is a **sum** of simpler CLOs.
- For $t + 1$, if T is self-additive, T is a **shuffle** of simpler CLOs.
- If all components are \aleph_0 -categorical, so is T
- If one component is Borel complete, so is T .

Corollary

All self-additive CLOs are \aleph_0 -categorical or Borel complete.

Local Behavior

If T is a CLO, there is a space $IT(T)$ of convex types – complete, consistent intersections of convex definable sets.

Think of $IT(T)$ as the infinitesimal decomposition of T .

Example: If T is self-additive, $IT(T)$ is a singleton.

Example: Let $T = \text{Th}(\omega, <) = \{0, 1, 2, 3, 4, \dots\}$.

- $IT(T)$ has order type $\omega + 1$.
- The finite pieces n are singletons.
- The final piece is the set of “infinite elements.”

This set is sometimes empty; it depends on the model.

The Divide for CLOs

Let T be some CLO.

Important Facts:

- Every **sufficiently saturated** model \mathcal{S} has the same $\text{Th}(\Phi(\mathcal{S}))$...
- ... and this theory is self-additive ...
- ... and hence either \aleph_0 -categorical or Borel complete.

Say T is **locally nonsimple** if some $\text{Th}(\Phi(\mathcal{S}))$ is Borel complete.

Say T is **locally simple** if every $\text{Th}(\Phi(\mathcal{S}))$ is \aleph_0 -categorical.

Easy: if T is locally nonsimple.

General CLOs

Say T is **locally simple**. Then \cong_T can be **characterized**:

- [Rosenstein]: $\Phi(\mathcal{S})$ has only finitely many convex subsets up to \equiv .
- For any $A \models T$, $\Phi(A)$ is equivalent to a convex subset of $\Phi(\mathcal{S})$.
- $A \models T$ is determined by $\Phi(A)$ for $\Phi \in IT(T)$.

Let n_Φ be the number of forms $\Phi(A)$ can take.

Fact: $n_\Phi > 1$ if and only if Φ is nonisolated.

- If $IT(T)$ is all isolated, T has one countable model
- If $IT(T)$ has finitely many nonisolated points, T has $n > 1$ models.
- If $IT(T)$ has \aleph_0 nonisolated points, T is \cong_1 .
- If $IT(T)$ has 2^{\aleph_0} nonisolated points, T is \cong_2 .

Observe: this is identical in spirit to the o-minimal case.

Wrapup

The general idea is this (for T o-minimal or a CLO):

- Divide T into convex, indivisible pieces
- If T is **locally nonsimple** then T is Borel complete
- If T is **locally simple** then the complexity of T is determined essentially on the topology of the type space.

Questions:

- Can the locally complicated / locally simple divide be defined for all ordered theories?
- Does “ T is Borel complete or among $1, n, \cong_1, \cong_2$ ” hold for all ordered theories?