

Borel-Complete O-Minimal Theories

Richard Rast

University of Maryland

May 20, 2014

Isomorphisms

Question

Given two countable models \mathcal{M} and \mathcal{N} of a sentence $\Phi \in L_{\omega_1, \omega}$, how hard is it to tell if $\mathcal{M} \cong \mathcal{N}$?

Sometimes it's easy:

- Φ is the theory of an infinite set
- Φ is $\text{Th}(\mathbb{Q}, <, c_n)_{n \in \omega}$

Sometimes it's hard:

- Φ is the theory of graphs (or groups, or fields, or . . .)
- Φ is $\text{Th}(\mathbb{Z}, <)$

Isomorphism and Borel Spaces

Give $X = \text{Mod}(\omega, \Phi)$ the formula topology, so \cong is a subset of $X \times X$.

If \cong is a *Borel* set, there is a “computable” invariant that classifies models.

If \cong is *Borel-complete* then there is no such invariant, and this as difficult as any isomorphism problem could possibly be.

It turns out that if Φ is an o-minimal first-order theory, then there is a dichotomy: \cong is either Borel (and very low) or Borel-complete.

Nonsimplicity

From now on, T is a countable o-minimal theory.

Definition (Mayer)

A type $p \in S_1(A)$ is *nonsimple* if there is a non-degenerate A -definable function $f : p^n \rightarrow p$, for some n .

Some examples of nonsimple types:

- $(\mathbb{R}^{\text{alg}}, <, +, \cdot)$: the type “at infinity” is nonsimple: $x \mapsto x^2$
- $(\mathbb{Q}, <, +, c_q)_{q \in \mathbb{Q}}$: the type “at π ” is nonsimple: $(x, y) \mapsto \frac{1}{2}(x + y)$
- $(\mathbb{Z}, <)$: the type “ $x = x$ ” is nonsimple: $x \mapsto x + 1$

The Main Theorem

Theorem (Sahota, 2013)

- *If, for some finite A , there is a nonsimple type over A , then for some finite $B \supset A$, T_B is Borel-complete.*
- *If there is no such A , then T is not Borel-complete – it's Π_3^0 .*

But, to answer the question for T :

Theorem (R. 2014)

If T admits a nonsimple type over some finite A , then T is Borel-complete.

Examples

Most interesting o-minimal theories are Borel-complete:

Corollary

Any nontrivial o-minimal theory is Borel-complete. In particular, any o-minimal theory which defines an infinite group is Borel-complete.

Corollary

Any discretely ordered o-minimal theory is Borel-complete.

The paradigmatic non-Borel-complete o-minimal theory is $(\mathbb{Q}, <)$ with some countable set of constants added.

No Nonsimple Types

Theorem (Mayer)

Suppose T has no nonsimple types over any finite set. Let $\mathcal{M}, \mathcal{N} \models T$ be countable. Then $\mathcal{M} \cong \mathcal{N}$ if and only if, for all $p \in S_1(\emptyset)$, $p(\mathcal{M}) \cong p(\mathcal{N})$.

Corollary (Sahota)

If T has no nonsimple types over any finite set, then $(Mod(T), \cong)$ is Π_3^0 .

Archimedean Equivalence

For the case where there *is* a nonsimple type, we want to embed (LO, \cong) into $(\text{Mod}(T), \cong)$. This is how we do it:

Definition

In a nonsimple type $p \in S_1(A)$, if a and b realize p , say $a \sim b$ if $a < b$ and there is $a' \in \text{cl}_A^p(a)$ where $b \leq a'$.

\sim is an equivalence relation whose classes are convex, so $p(\mathcal{M})/\sim$ is a linear order, called the *ladder*.

Some examples:

- Give $\mathcal{M}_1 = (\mathbb{Q}^n, +, <)$ the lexicographic order. Then $p = \{x > 0\}$ is a complete type and $p(\mathcal{M}_1)/\sim$ is $\{[e_1] > \dots > [e_n]\}$.
- If L is a linear order, let $\mathcal{M}_2 = (L \times \mathbb{Z}, <)$. So $p(x) = \{x = x\}$ is a complete type and $p(\mathcal{M}_2)/\sim$ is isomorphic to L .

A Nonsimple Type

Fix a nonsimple type $p \in S_1(\emptyset)$. We build a Borel reduction $(\text{LO}, \cong) \rightarrow (\text{Mod}(T), \cong)$ where L appears as the ladder $p(\mathcal{M}_L)/\sim$ as follows:

- ① For a countable linear order L , fix a set $X_L = \{x_\alpha : \alpha \in L\}$ from p , where if $\alpha < \beta$, then $[x_\alpha] < [x_\beta]$ in the Archimedean sense.
- ② Let $\mathcal{M}_L \models T$ be prime over X_L .
- ③ The map $\alpha \mapsto [x_\alpha]$ should be an order-isomorphism $L \rightarrow p(\mathcal{M}_L)/\sim$.
- ④ Then for any orders L and L' , we have $L \cong L'$ iff $\mathcal{M}_L \cong \mathcal{M}_{L'}$.

The tricky spot is surjectivity in (3); say that p is *faithful* if this map is surjective (in which case T is Borel-complete).

Unfaithful Types

If p is nonsimple and nonisolated, then there is always a faithful type somewhere. In particular, non-cuts are faithful.

Example

Let $T = \text{Th}(Q, <, f)$, where $f(x, y, z) = x + y - z$. Then $x = x$ is an isolated, nonsimple type which is not faithful.

If we pick two parameters (call them 0 and 1) then we get a nonsimple (faithful) type at “infinity” where we can build a ladder. But it will *not* be preserved under isomorphism.

Tails

Example

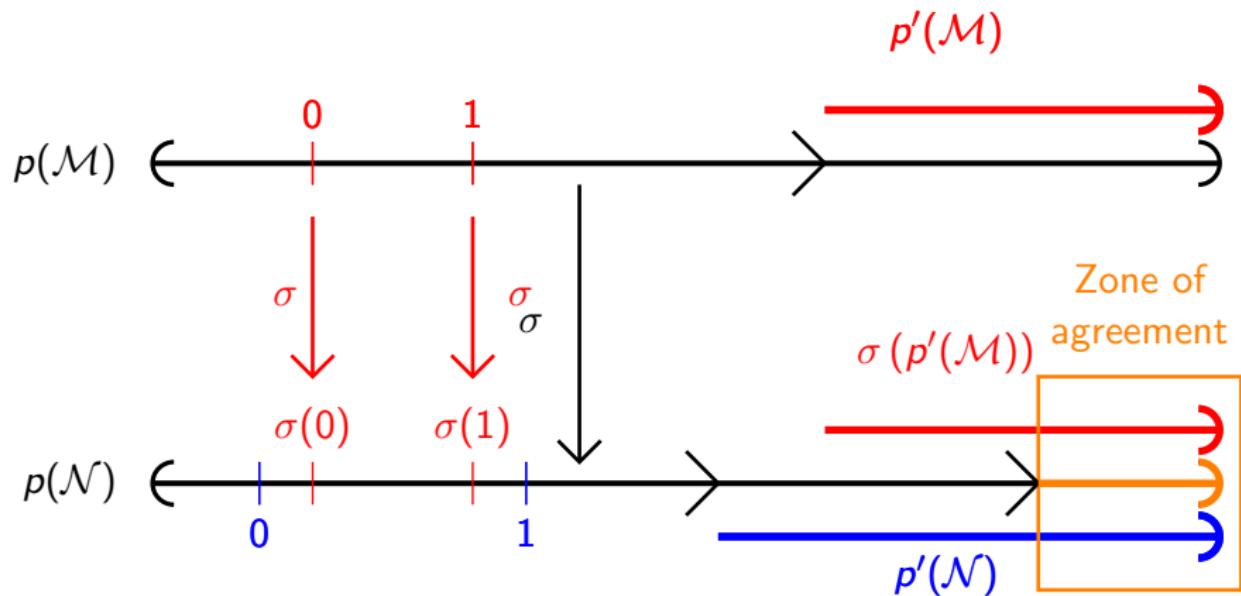
Let $T = \text{Th}(Q, <, f)$, where $f(x, y, z) = x + y - z$. Then $x = x$ is an isolated, nonsimple type which is not faithful.

Given two parameter choices $\{0, 1\}$ and $\{0', 1'\}$, if x and y are “big enough” – infinite with respect to $\{0, 0', 1, 1'\}$ – then x and y are equivalent over $(0, 1)$ if and only if they’re equivalent over $(0', 1')$.

So if we fix $\{0, 1\}$, then build a long enough ladder above them, a *tail* of our intended linear order is preserved under isomorphism.

The Tail Picture

So suppose p is our nonsimple type, and $\sigma : \mathcal{M} \rightarrow \mathcal{N}$ is an isomorphism. Then the situation looks like this:



So there is a common *tail* of the two linear orders.

The General Proof

Fix a nonsimple type $p \in S_1(\emptyset)$. We would like build a Borel reduction from the LO to $(\text{Mod}(T), \cong)$ as follows:

- ① Fix a set $A = \{0, \dots, n\}$ of parameters to get a nonisolated type.
- ② For a countable linear order L , fix a set $X_L = \{x_\alpha : \alpha \in L\}$ from p , where $x_\alpha > \text{cl}_A^p(X_\alpha)$.
- ③ Let $\mathcal{M}_L \models T$ be prime over $A \cup X_L$.
- ④ The map $\alpha \mapsto [x_\alpha]$ will be an order-isomorphism $L \rightarrow p(\mathcal{M}_L)/\sim_A$.
- ⑤ Then for any orders L and L' , if $\mathcal{M}_L \cong \mathcal{M}_{L'}$, then L and L' are isomorphic on a tail.

The Last Piece

Lemma

There is an invariant, Borel-complete subclass $\mathcal{S} \subset LO$ where \cong is equivalent to tail isomorphism.

So if T admits a nonsimple type, then T is Borel-complete.

Thank you!